45 research outputs found

    Functional analysis of the group A streptococcal luxS/AI-2 system in metabolism, adaptation to stress and interaction with host cells

    Get PDF
    Background The luxS/AI-2 signaling pathway has been reported to interfere with important physiological and pathogenic functions in a variety of bacteria. In the present study, we investigated the functional role of the streptococcal luxS/AI-2 system in metabolism and diverse aspects of pathogenicity including the adaptation of the organism to stress conditions using two serotypes of Streptococcus pyogenes, M1 and M19. Results Exposing wild-type and isogenic luxS-deficient strains to sulfur-limited media suggested a limited role for luxS in streptococcal activated methyl cycle metabolism. Interestingly, loss of luxS led to an increased acid tolerance in both serotypes. Accordingly, luxS expression and AI-2 production were reduced at lower pH, thus linking the luxS/AI-2 system to stress adaptation in S. pyogenes. luxS expression and AI-2 production also decreased when cells were grown in RPMI medium supplemented with 10% serum, considered to be a host environment-mimicking medium. Furthermore, interaction analysis with epithelial cells and macrophages showed a clear advantage of the luxS-deficient mutants to be internalized and survive intracellularly in the host cells compared to the wild-type parents. In addition, our data revealed that luxS influences the expression of two virulence-associated factors, the fasX regulatory RNA and the virulence gene sibA (psp). Conclusion Here, we suggest that the group A streptococcal luxS/AI-2 system is not only involved in the regulation of virulence factor expression but in addition low level of luxS expression seems to provide an advantage for bacterial survival in conditions that can be encountered during infections

    On the thermal performance of radiative stagnation-point hybrid nanofluid flow across a wedge with heat source/sink effects and sensitivity analysis

    No full text
    The present article aims to examine the thermal performance and the sensitivity analysis of a GO−TiO2/water hybrid nanofluid in the presence of different nanoparticle shapes along with heat absorption and thermal radiation effects over a wedge geometry. Analyzing the effects of heat generation and radiation effects is one of the key studies conducted by researchers in various nanofluid flows over some required geometries. However, a combined study of these effects has yet to be studied over a moving wedge, and that combination defines the novelty of the work. Similarity transformations are implemented to the governing equations to obtain the final set of nondimensional equations, which are solved using the bvp4c code in MATLAB. The results obtained were in close agreement with the published results. The Nusselt number decreased with an increase in the heat source parameter Q, and it increased with an increasing Hartree pressure gradient β and thermal radiation parameter Rd. The sensitivity is statistically analyzed for the variations in radiation effect, heat source, and pressure gradient parameters on the Nusselt number. The high values for R2=99.99% and Adj R2=99.96% validate the ANOVA results obtained using a Box–Behnken design (BBD) model in the response surface methodology (RSM) with 14 degrees of freedom. The input parameters Rd and β show positive sensitivity, while Q shows negative sensitivity toward the skin friction. The Nusselt number proves to be most sensitive toward the pressure gradient parameter. TiO2, graphene (Gr), and the derivative forms of graphene, are gaining much importance due to their wide applications in the oil and petroleum industries. Thus, this study contributes to lubrication purposes, emulsion stabilizers, oxalic acid removal, anti-corrosive properties, etc
    corecore