400 research outputs found
Recommended from our members
Multi-Material Ultrasonic Consolidation
Ultrasonic consolidation (UC) is a recently developed direct metal solid freeform
fabrication process. While the process has been well-demonstrated for part fabrication in Al alloy
3003 H18, including with intricate cooling channels, some of the potential strengths of the
process have not been fully exploited. One of them is its flexibility with build materials and the
other is its suitability for fabrication of multi-material and functionally graded material parts with
enhanced functional or mechanical properties. Capitalizing on these capabilities is critical for
broadening the application range and commercial utilization of the process. In the current work,
UC was used to investigate ultrasonic bonding of a broad range of engineering materials, which
included stainless steels, Ni-base alloys, brass, Al alloys, and Al alloy composites. UC multimaterial part fabrication was examined using Al alloy 3003 as the bulk part material and the
above mentioned materials as performance enhancement materials. Studies were focused on
microstructural aspects to evaluate interface characteristics between dissimilar material layers.
The results showed that most of these materials can be successfully bonded to Al alloy 3003 and
vice versa using the ultrasonic consolidation process. Bond formation and interface
characteristics between various material combinations are discussed based on oxide layer
characteristics, material properties, and others.Mechanical Engineerin
On Contra -wgrα-Continuous and Almost Contra-wgrα-Continuous Functions
In this paper a new class of function called contra-wgrα continuous function is introduced and its properties are studied. Further the notion of almost contra wgrα-continuous function is introduced
On Soft gr-Closed sets in Soft Topological Spaces
The aim of this paper is to introduce soft pgr-closed sets in topological spaces which is defined over the universe of the given set with a fixed set of parameters. Further, we investigate its properties and its relationship with other soft closed sets
Effect of rate of application on degradation of imazethapyr in groundnut and soil under tropical Indian condition
Pesticides though formulated to be biologically degradable, few herbicides reported to cause surface and groundwater contamination which needs the monitoring of herbicide residues in environment continuously. Thus, to monitor the persistence and residues in crops, imazethapyr degradation studies were conducted in soil with groundnut cropping under Indian tropical condition. A groundnut field was treated with different doses of imazethapyr as early post emergence. Results showed that the degradation of imazethapyr in soil and groundnut plant followed first order reaction kinetics irrespective of the dose. The residue of imazethapyr persists in soil up to 60 days at higher rates of application while it persists up to 30 days in plant with the calculated half life of 2.8 to 7.4 days in soil and 5.1 to 5.9 days in plant. At the time of harvest, the residue of imazethapyr in soil, groundnut haulm or pods were below the detectable limit of 0.008 mg/kg across different doses of application. However, the continuous and inappropriate use in light textured soils may cause groundwater contamination and bioaccumulation in plant system. Hence, a pre harvest interval of 75 days must be allowed after the application of imazethapyr for the weed control in groundnut
On R^G-Homeomorphisms in Topological Spaces.
This paper deals with r^g open and closed maps. Also we introduce a new class of maps namely r^g* - homeomorphism which form a subclass of r^g - homeomorphism
Recommended from our members
Improving Linear Weld Density in Ultrasonically Consolidated Parts
Ultrasonic consolidation is a novel additive manufacturing process with immense
potential for fabrication of complex shaped three-dimensional metallic objects from metal foils.
The proportion of bonded area to unbonded area along the layer interface, termed linear weld
density (LWD), is perhaps the most important quality attribute of ultrasonically consolidated
parts. Part mechanical properties largely depend on LWD and a high level of LWD must be
ensured in parts intended for load-bearing structural applications. It is therefore necessary to
understand what factors influence LWD or defect formation and devise methods to enhance bond
formation during ultrasonic consolidation. The current work examines these issues and proposes
strategies to ensure near 100% LWD in ultrasonically consolidated aluminum alloy 3003 parts.
The work elucidates the effects of various process parameters on LWD and a qualitative
understanding of the effects of process parameters on bond formation during ultrasonic
consolidation is presented. The beneficial effects of using elevated substrate temperatures and its
implications on overall manufacturing flexibility are discussed. A preliminary understanding of
defect morphologies and defect formation is presented, based on which a method (involving
surface machining) for minimizing defect incidence during ultrasonic consolidation is proposed
and demonstrated. Finally, trade-offs between part quality and build time are discussed.Mechanical Engineerin
Field dissipation of pendimethalin and alachlor in sandy clay loam soil and its terminal residues in sunflower (Helianthus annus L.)
Field experiments were conducted with sunflower as a test crop during 2010-11 to study the dissipation kinetics and the persistence of pendimethalin and alachlor in sandy clay loam soil and its terminal residues in sunflower. Herbicides were applied at recommended and double the recommended dose along with control and the treatments were replicated thrice in randomized block design. The soil and plant samples collected at periodical intervals for herbicides residue determination using GC equipped with ECD detector. Results shows that the degradation of both the herbicides in soil was faster at higher dose of application than at the lower dose and the concentration decreased with the advancement in crop growth. While pendimethalin persisted in soil for 60 – 90 days, the alachlor persisted in soil for 30 - 45 days depending on the quantity of application. Degradation of both the herbicides in soil followed first order kinetics with the mean half life of 14.6 and 9.8 days respectively for pendimethalin and alachlor. Residues of these herbicides were below 0.001 mg/kg at the time of harvest in soil, sunflower seeds and stalks showed that these herbicides a can be safely used for the control of weeds in sunflower cultivation
Recommended from our members
Maximum Height to Width Ratio of Freestanding Structures Built Using Ultrasonic Consolidation
Ultrasonic consolidation (UC) is a process whereby metal foils can be metallurgically
bonded at or near room temperature. The UC process works by inducing high-speed differential
motion (~20kHz) between a newly deposited layer and a substrate (which consists of a base plate
and any previously deposited layers of material). This differential motion causes plastic
deformation at the interface, which breaks up surface oxides and deforms surface asperities,
bringing clean metal surfaces into intimate contact, where bonding occurs. If the substrate is not
stiff enough to resist deflection during ultrasonic excitation of newly deposited layers, then it
deflects along with the newly deposited layer, resulting in no differential motion and lack of
bonding. Geometric issues which control substrate stiffness and deflection were investigated at
Utah State University by building a number of free-standing rib structures with varying
dimensions and orientations. Each structure was built to a height where lack of bonding between
the previously deposited layers and the newly deposited layer caused the building process to fail,
a height to width ratio (H/W) of approximately 1:1. The parts were then cut, polished, and
viewed under a microscope. An ANSYS model was created to investigate analytically the cause
of this failure. It appears build failure is due to excessive deflection of the ribs around a 1:1 H/W,
resulting in insufficient differential motion and deformation to achieve bonding. Preliminary
results show, when the H/W reaches 1:1, the von Mises stress is found to be tensile along
portions of the bonding interface, which eliminates the compressive frictional forces necessary
for plastic deformation and formation of a metallurgical bond. These tensile stresses are shown
to be concentrated at regions near the edges of the newly deposited foil layer.Mechanical Engineerin
Adaptive isochromosomes in Nicandra
This article does not have an abstract
- …