30 research outputs found

    Potent spinal parenchymal AAV9-mediated gene delivery by subpial injection in adult rats and pigs.

    Get PDF
    Effective in vivo use of adeno-associated virus (AAV)-based vectors to achieve gene-specific silencing or upregulation in the central nervous system has been limited by the inability to provide more than limited deep parenchymal expression in adult animals using delivery routes with the most clinical relevance (intravenous or intrathecal). Here, we demonstrate that the spinal pia membrane represents the primary barrier limiting effective AAV9 penetration into the spinal parenchyma after intrathecal AAV9 delivery. We develop a novel subpial AAV9 delivery technique and AAV9-dextran formulation. We use these in adult rats and pigs to show (i) potent spinal parenchymal transgene expression in white and gray matter including neurons, glial and endothelial cells after single bolus subpial AAV9 delivery; (ii) delivery to almost all apparent descending motor axons throughout the length of the spinal cord after cervical or thoracic subpial AAV9 injection; (iii) potent retrograde transgene expression in brain motor centers (motor cortex and brain stem); and (iv) the relative safety of this approach by defining normal neurological function for up to 6 months after AAV9 delivery. Thus, subpial delivery of AAV9 enables gene-based therapies with a wide range of potential experimental and clinical utilizations in adult animals and human patients

    Combinational Spinal GAD65 Gene Delivery and Systemic GABA-Mimetic Treatment for Modulation of Spasticity

    Get PDF
    receptor agonist), while effective in modulating spasticity is associated with major side effects such as general sedation and progressive tolerance development. The goal of the present study was to assess if a combined therapy composed of spinal segment-specific upregulation of GAD65 (glutamate decarboxylase) gene once combined with systemic treatment with tiagabine (GABA uptake inhibitor) will lead to an antispasticity effect and whether such an effect will only be present in GAD65 gene over-expressing spinal segments.Adult Sprague-Dawley (SD) rats were exposed to transient spinal ischemia (10 min) to induce muscle spasticity. Animals then received lumbar injection of HIV1-CMV-GAD65 lentivirus (LVs) targeting ventral α-motoneuronal pools. At 2–3 weeks after lentivirus delivery animals were treated systemically with tiagabine (4, 10, 20 or 40 mg/kg or vehicle) and the degree of spasticity response measured. In a separate experiment the expression of GAD65 gene after spinal parenchymal delivery of GAD65-lentivirus in naive minipigs was studied. Spastic SD rats receiving spinal injections of the GAD65 gene and treated with systemic tiagabine showed potent and tiagabine-dose-dependent alleviation of spasticity. Neither treatment alone (i.e., GAD65-LVs injection only or tiagabine treatment only) had any significant antispasticity effect nor had any detectable side effect. Measured antispasticity effect correlated with increase in spinal parenchymal GABA synthesis and was restricted to spinal segments overexpressing GAD65 gene.These data show that treatment with orally bioavailable GABA-mimetic drugs if combined with spinal-segment-specific GAD65 gene overexpression can represent a novel and highly effective anti-spasticity treatment which is associated with minimal side effects and is restricted to GAD65-gene over-expressing spinal segments

    A Transgenic Minipig Model of Huntington\u27s Disease

    Get PDF
    Background: Some promising treatments for Huntington\u27s disease (HD) may require pre-clinical testing in large animals. Minipig is a suitable species because of its large gyrencephalic brain and long lifespan. Objective: To generate HD transgenic (TgHD) minipigs encoding huntingtin (HTT)1–548 under the control of human HTT promoter. Methods: Transgenesis was achieved by lentiviral infection of porcine embryos. PCR assessment of gene transfer, observations of behavior, and postmortem biochemical and immunohistochemical studies were conducted. Results: One copy of the human HTT transgene encoding 124 glutamines integrated into chromosome 1 q24-q25 and successful germ line transmission occurred through successive generations (F0, F1, F2 and F3 generations). No developmental or gross motor deficits were noted up to 40 months of age. Mutant HTT mRNA and protein fragment were detected in brain and peripheral tissues. No aggregate formation in brain up to 16 months was seen by AGERA and filter retardation or by immunostaining. DARPP32 labeling in WT and TgHD minipig neostriatum was patchy. Analysis of 16 month old sibling pairs showed reduced intensity of DARPP32 immunoreactivity in neostriatal TgHD neurons compared to those of WT. Compared to WT, TgHD boars by one year had reduced fertility and fewer spermatozoa per ejaculate. In vitro analysis revealed a significant decline in the number of WT minipig oocytes penetrated by TgHD spermatozoa. Conclusions: The findings demonstrate successful establishment of a transgenic model of HD in minipig that should be valuable for testing long term safety of HD therapeutics. The emergence of HD-like phenotypes in the TgHD minipigs will require more study

    Survival of syngeneic and allogeneic iPSC–derived neural precursors after spinal grafting in minipigs

    Get PDF
    The use of autologous (or syngeneic) cells derived from induced pluripotent stem cells (iPSCs) holds great promise for future clinical use in a wide range of diseases and injuries. It is expected that cell replacement therapies using autologous cells would forego the need for immunosuppression, otherwise required in allogeneic transplantations. However, recent studies have shown the unexpected immune rejection of undifferentiated autologous mouse iPSCs after transplantation. Whether similar immunogenic properties are maintained in iPSC-derived lineage-committed cells (such as neural precursors) is relatively unknown. We demonstrate that syngeneic porcine iPSC-derived neural precursor cell (NPC) transplantation to the spinal cord in the absence of immunosuppression is associated with long-term survival and neuronal and glial differentiation. No tumor formation was noted. Similar cell engraftment and differentiation were shown in spinally injured transiently immunosuppressed swine leukocyte antigen (SLA)–mismatched allogeneic pigs. These data demonstrate that iPSC-NPCs can be grafted into syngeneic recipients in the absence of immunosuppression and that temporary immunosuppression is sufficient to induce long-term immune tolerance after NPC engraftment into spinally injured allogeneic recipients. Collectively, our results show that iPSC-NPCs represent an alternative source of transplantable NPCs for the treatment of a variety of disorders affecting the spinal cord, including trauma, ischemia, or amyotrophic lateral sclerosis

    Impact factors on cervical dilation rates in the first stage of labor

    Full text link
    Abstract Aims: To assess cervical dilation rates of nulliparous and multiparous women in the active first stage of labor and to evaluate significant impact factors. Methods: In a retrospective cohort study between January 2007 and July 2014 at the University Hospital of Zurich in Switzerland, we analyzed 8378 women with singleton pregnancies in vertex presentation with a vaginal delivery at 34+0 to 42+5 gestational weeks. Median cervical dilation rates were calculated and different impact factors evaluated. Results: Cervical dilation rates increase during labor progress with faster rates in multiparous compared with nulliparous women (P&lt;0.001). Dilation rates exceed 1 cm/h at a dilatation of 6–7 cm, but are very individual. Accelerating impact factors are multiparity, a greater amount of cervical dilation and fetal occipitoanterior position, whereas the use of epidural anesthesia, a higher fetal weight and head circumference decelerate dilation (P&lt;0.001). Conclusion: Cervical dilation is a hyperbolic increasing process, with faster dilation rates in multiparous compared to nulliparous women and a reversal point of labor around 6–7 cm, respectively. Besides, cervical dilation is highly individual and affected by several impact factors. The diagnosis of labor arrest or prolonged labor should therefore be based on such rates and on the individual evaluation of every woman. </jats:sec

    Impact factors on fetal descent rates in the active phase of labor: a retrospective cohort study

    Full text link
    Aim: To assess fetal descent rates of nulliparous and multiparous women in the active phase of labor and to evaluate significant impact factors. Methods: In a retrospective cohort study at the University Hospital of Zurich, Switzerland, we evaluated 6045 spontaneous vaginal deliveries with a singleton in vertex presentation between January 2007 and July 2014 at 34 0/7 to 42 0/7 gestational weeks. Median fetal descent rates and their 10th and 90th percentiles were assessed in the active phase of labor and different impact factors were evaluated. Results: Fetal descent rates are exponentially increasing. Nulliparous women have slower fetal descent than multiparous women (P<0.001), ranging from 0 to 5.81 cm/h and from 0 to 15 cm/h, respectively. The total duration of fetal descent in labor is 5.42 h for nulliparous and 2.71 h for multiparous women. Accelerating impact factors are a lower fetal station, multiparity, increasing maternal weight and fetal occipitoanterior position, whereas epidural anesthesia decelerates fetal descent (P<0.001). Conclusions: Fetal descent is a hyperbolic increasing process with faster descent in multiparous women compared to nulliparous women, is highly inter individual and is associated with different impact factors. The diagnosis of labor arrest or prolonged labor should therefore be based on such rates as well as on individual evaluation of every parturient

    Isolation and Characterization of Small Extracellular Vesicles from Porcine Blood Plasma, Cerebrospinal Fluid, and Seminal Plasma

    No full text
    Extracellular vesicles (EVs) are a highly attractive subject of biomedical research as possible carriers of nucleic acid and protein biomarkers. EVs released to body fluids enable indirect access to inner organs by so-called &#8220;liquid biopsies&#8221;. Obtaining a high-quality EV sample with minimum contaminants is crucial for proteomic analyses using LC&#8722;MS/MS or other techniques. However, the EV content in various body fluids largely differs, which may hamper subsequent analyses. Here, we present a comparison of extracellular vesicle yields from blood plasma, cerebrospinal fluid, and seminal plasma using an experimental pig model. Pigs are widely used in biomedical research as large animal models with anatomy and physiology close to those of humans and enable studies (e.g., of the nervous system) that are unfeasible in humans. EVs were isolated from body fluids by differential centrifugation followed by ultracentrifugation. EVs were characterized according to protein yields and to the quality of the isolated vesicles (e.g., size distribution, morphology, positivity for exosome markers). In our experimental setting, substantial differences in EV amounts were identified among body fluids, with the seminal plasma being the richest EV source. The yields of pellet proteins from ultracentrifugation of 1 mL of porcine body fluids may help to estimate body fluid input volumes to obtain sufficient samples for subsequent proteomic analyses
    corecore