4 research outputs found

    Expression of miRNA-106b in conventional renal cell carcinoma is a potential marker for prediction of early metastasis after nephrectomy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs are endogenously expressed regulatory noncoding RNAs. Previous studies have shown altered expression levels of several microRNAs in renal cell carcinoma.</p> <p>Methods</p> <p>We examined the expression levels of selected microRNAs in 38 samples of conventional renal cell carcinoma (RCC) and 10 samples of non-tumoral renal parenchyma using TaqMan real-time PCR method.</p> <p>Results</p> <p>The expression levels of miRNA-155 (p < 0.0001), miRNA-210 (p < 0.0001), miRNA-106a (p < 0.0001) and miRNA-106b (p < 0.0001) were significantly over-expressed in tumor tissue, whereas the expression of miRNA-141 (p < 0.0001) and miRNA-200c (p < 0.0001) were significantly decreased in RCC samples. There were no significant differences between expression levels of miRNA-182 and miRNA-200b in tumor samples and renal parenchyma. Our data suggest that expression levels of miRNA-106b are significantly lower in tumors of patients who developed metastasis (p = 0.030) and miR-106b is a potential predictive marker of early metastasis after nephrectomy in RCC patients (long-rank p = 0.032).</p> <p>Conclusions</p> <p>We have confirmed previous observations obtained by miRNA microarray analysis using standardized real-time PCR method. For the first time, we have identified a prognostic significance of miRNA-106b, which, after validation on a larger group of patients, maybe useful as a promising biomarker in patients with RCC.</p

    Chair/bedside diagnosis of oral and respiratory tract infections, and identification of antibiotic resistances for personalised monitoring and treatment

    Get PDF
    textabstractGlobal healthcare systems are struggling with the enormous burden associated with infectious diseases, as well as the incessant rise of antimicrobial resistance. In order to adequately address these issues, there is an urgent need for rapid and accurate infectious disease diagnostics. The H2020 project DIAGORAS aims at diagnosing oral and respiratory tract infections using a fully integrated, automated and user-friendly platform for physicians' offices, schools, elderly care units, community settings, etc. Oral diseases (periodontitis, dental caries) will be detected via multiplexed, quantitative analysis of salivary markers (bacterial DNA and host response proteins) for early prevention and personalised monitoring. Respiratory Tract Infections will be diagnosed by means of DNA/RNA differentiation so as to identify their bacterial or viral nature. Together with antibiotic resistance screening on the same platform, a more efficient treatment management is expected at the point-of-care. At the heart of DIAGORAS lies a centrifugal microfluidic platform (LabDisk and associated processing device) integrating all components and assays for a fully automated analysis. The project involves an interface with a clinical algorithm for the comprehensive presentation of results to end-users, thereby increasing the platform's clinical utility. DIAGORAS' performance will be validated at clinical settings and compared with gold standards
    corecore