8 research outputs found

    Lymphangiogenesis and Its Correlation with the VEGF Expression and the Sentinel Lymph Node in Cutaneous Melanomas

    Get PDF
    The aim of the study is to evaluate the density of intratumoral and peritumoral lymphatic vessels in primary cutaneous melanomas and to assess their correlation with the status of sentinel lymph nodes and the VEGF expression in tumor cells and stromal cells. A total of 40 patients were enrolled in the study: the melanomas were radically excised with the extirpation of the sentinel lymph node. The study subjects were divided into two groups: 20 cases with positive and 20 cases with negative sentinel lymph node results. The density of lymphatic vessels was evaluated by the antibody D2-40 and the VEGF expression was investigated in the semiquantitative way. The VEGF expression in melanoma cells and the stromal cells was negative to variable positive at both SLN negative and SLN positive patients in all pT stages. In the group of SLN positive patients, the density of intratumoral lymphatic vessels was low up to moderate, while it was observed to be absent, somewhere on the low level in the group of SLN negative patients. On the other side, the density of peritumoral lymphatic vessels was equally numerous at both SLN negative and SLN positive patients. The lymphatic invasion was found out at 4 SLN positive patients only. The ulceration was chiefly in the group of LN positive patients. The results show that the density of lymphangiogenesis and the intensity of the VEGF expression are considered to be an unreliable predictor of melanoma metastasis to the sentinel lymph node, but the ulceration and the lymphatic invasion can predict the potential for metastasis

    The Changes of Angiogenesis and Immune Cell Infiltration in the Intra- and Peri-Tumoral Melanoma Microenvironment

    No full text
    Malignant melanoma (MM) urgently needs identification of new markers with better predictive value than currently-used clinical and histological parameters. Cancer cells stimulate the formation of a specialized tumor microenvironment, which reciprocally affects uncontrolled proliferation and migration. However, this microenvironment is heterogeneous with different sub-compartments defined by their access to oxygen and nutrients. This study evaluated microvascular density (MVD), CD3+ lymphocytes (TILs) and FOXP3+ T-regulatory lymphocytes (Tregs) on formalin-fixed paraffin-embedded tissue sections using light microscopy. We analyzed 82 malignant melanomas, divided according to the AJCC TNM classification into four groups—pT1 (35), pT2 (17), pT3 (18) and pT4 (12)—and 25 benign pigmented nevi. All parameters were measured in both the central areas of tumors (C) and at their periphery (P). A marked increase in all parameters was found in melanomas compared to nevi (p = 0.0001). There was a positive correlation between MVD, TILs, FOXP3+ Tregs and the vertical growth phase. The results show that MVD, TILs and FOXP3+ Tregs substantially influence cutaneous melanoma microenvironment. We found significant topographic differences of the parameters between central areas of tumors and their boundaries
    corecore