13 research outputs found

    Melissococcus plutonius Can Be Effectively and Economically Detected Using Hive Debris and Conventional PCR

    No full text
    European foulbrood (EFB) is an infectious disease of honey bees caused by the bacterium Melissococcus plutonius. A method for DNA isolation and conventional PCR diagnosis was developed using hive debris, which was non-invasively collected on paper sheets placed on the bottom boards of hives. Field trials utilized 23 honey bee colonies with clinically positive symptoms and 21 colonies without symptoms. Bayes statistics were applied to calculate the comparable parameters for EFB diagnostics when using honey, hive debris, or samples of adult bees. The reliability of the conventional PCR was 100% at 6.7 × 103 Colony Forming Unit of M. plutonius in 1 g of debris. The sensitivity of the method for the sampled honey, hive debris, and adult bees was 0.867, 0.714, and 1.000, respectively. The specificity for the tested matrices was 0.842, 0.800, and 0.833. The predictive values for the positive tests from selected populations with 52% prevalence were 0.813, 0.833, and 0.842, and the real accuracies were 0.853, 0.750, and 0.912, for the honey, hive debris, and adult bees, respectively. It was concluded that hive debris can effectively be utilized to non-invasively monitor EFB in honey bee colonies

    AccuCalc: A Python Package for Accuracy Calculation in GWAS

    No full text
    The genome-wide association study (GWAS) is a popular genomic approach that identifies genomic regions associated with a phenotype and, thus, aims to discover causative mutations (CM) in the genes underlying the phenotype. However, GWAS discoveries are limited by many factors and typically identify associated genomic regions without the further ability to compare the viability of candidate genes and actual CMs. Therefore, the current methodology is limited to CM identification. In our recent work, we presented a novel approach to an empowered “GWAS to Genes” strategy that we named Synthetic phenotype to causative mutation (SP2CM). We established this strategy to identify CMs in soybean genes and developed a web-based tool for accuracy calculation (AccuTool) for a reference panel of soybean accessions. Here, we describe our further development of the tool that extends its utilization for other species and named it AccuCalc. We enhanced the tool for the analysis of datasets with a low-frequency distribution of a rare phenotype by automated formatting of a synthetic phenotype and added another accuracy-based GWAS evaluation criterion to the accuracy calculation. We designed AccuCalc as a Python package for GWAS data analysis for any user-defined species-independent variant calling format (vcf) or HapMap format (hmp) as input data. AccuCalc saves analysis outputs in user-friendly tab-delimited formats and also offers visualization of the GWAS results as Manhattan plots accentuated by accuracy. Under the hood of Python, AccuCalc is publicly available and, thus, can be used conveniently for the SP2CM strategy utilization for every species

    <i>Melissococcus plutonius</i> Can Be Effectively and Economically Detected Using Hive Debris and Conventional PCR

    No full text
    European foulbrood (EFB) is an infectious disease of honey bees caused by the bacterium Melissococcus plutonius. A method for DNA isolation and conventional PCR diagnosis was developed using hive debris, which was non-invasively collected on paper sheets placed on the bottom boards of hives. Field trials utilized 23 honey bee colonies with clinically positive symptoms and 21 colonies without symptoms. Bayes statistics were applied to calculate the comparable parameters for EFB diagnostics when using honey, hive debris, or samples of adult bees. The reliability of the conventional PCR was 100% at 6.7 × 103 Colony Forming Unit of M. plutonius in 1 g of debris. The sensitivity of the method for the sampled honey, hive debris, and adult bees was 0.867, 0.714, and 1.000, respectively. The specificity for the tested matrices was 0.842, 0.800, and 0.833. The predictive values for the positive tests from selected populations with 52% prevalence were 0.813, 0.833, and 0.842, and the real accuracies were 0.853, 0.750, and 0.912, for the honey, hive debris, and adult bees, respectively. It was concluded that hive debris can effectively be utilized to non-invasively monitor EFB in honey bee colonies

    Table6_Natural and artificial selection of multiple alleles revealed through genomic analyses.xlsx

    No full text
    Genome-to-phenome research in agriculture aims to improve crops through in silico predictions. Genome-wide association study (GWAS) is potent in identifying genomic loci that underlie important traits. As a statistical method, increasing the sample quantity, data quality, or diversity of the GWAS dataset positively impacts GWAS power. For more precise breeding, concrete candidate genes with exact functional variants must be discovered. Many post-GWAS methods have been developed to narrow down the associated genomic regions and, ideally, to predict candidate genes and causative mutations (CMs). Historical natural selection and breeding-related artificial selection both act to change the frequencies of different alleles of genes that control phenotypes. With higher diversity and more extensive GWAS datasets, there is an increased chance of multiple alleles with independent CMs in a single causal gene. This can be caused by the presence of samples from geographically isolated regions that arose during natural or artificial selection. This simple fact is a complicating factor in GWAS-driven discoveries. Currently, none of the existing association methods address this issue and need to identify multiple alleles and, more specifically, the actual CMs. Therefore, we developed a tool that computes a score for a combination of variant positions in a single candidate gene and, based on the highest score, identifies the best number and combination of CMs. The tool is publicly available as a Python package on GitHub, and we further created a web-based Multiple Alleles discovery (MADis) tool that supports soybean and is hosted in SoyKB (https://soykb.org/SoybeanMADisTool/). We tested and validated the algorithm and presented the utilization of MADis in a pod pigmentation L1 gene case study with multiple CMs from natural or artificial selection. Finally, we identified a candidate gene for the pod color L2 locus and predicted the existence of multiple alleles that potentially cause loss of pod pigmentation. In this work, we show how a genomic analysis can be employed to explore the natural and artificial selection of multiple alleles and, thus, improve and accelerate crop breeding in agriculture.</p

    Table4_Natural and artificial selection of multiple alleles revealed through genomic analyses.xlsx

    No full text
    Genome-to-phenome research in agriculture aims to improve crops through in silico predictions. Genome-wide association study (GWAS) is potent in identifying genomic loci that underlie important traits. As a statistical method, increasing the sample quantity, data quality, or diversity of the GWAS dataset positively impacts GWAS power. For more precise breeding, concrete candidate genes with exact functional variants must be discovered. Many post-GWAS methods have been developed to narrow down the associated genomic regions and, ideally, to predict candidate genes and causative mutations (CMs). Historical natural selection and breeding-related artificial selection both act to change the frequencies of different alleles of genes that control phenotypes. With higher diversity and more extensive GWAS datasets, there is an increased chance of multiple alleles with independent CMs in a single causal gene. This can be caused by the presence of samples from geographically isolated regions that arose during natural or artificial selection. This simple fact is a complicating factor in GWAS-driven discoveries. Currently, none of the existing association methods address this issue and need to identify multiple alleles and, more specifically, the actual CMs. Therefore, we developed a tool that computes a score for a combination of variant positions in a single candidate gene and, based on the highest score, identifies the best number and combination of CMs. The tool is publicly available as a Python package on GitHub, and we further created a web-based Multiple Alleles discovery (MADis) tool that supports soybean and is hosted in SoyKB (https://soykb.org/SoybeanMADisTool/). We tested and validated the algorithm and presented the utilization of MADis in a pod pigmentation L1 gene case study with multiple CMs from natural or artificial selection. Finally, we identified a candidate gene for the pod color L2 locus and predicted the existence of multiple alleles that potentially cause loss of pod pigmentation. In this work, we show how a genomic analysis can be employed to explore the natural and artificial selection of multiple alleles and, thus, improve and accelerate crop breeding in agriculture.</p

    Table1_Natural and artificial selection of multiple alleles revealed through genomic analyses.DOCX

    No full text
    Genome-to-phenome research in agriculture aims to improve crops through in silico predictions. Genome-wide association study (GWAS) is potent in identifying genomic loci that underlie important traits. As a statistical method, increasing the sample quantity, data quality, or diversity of the GWAS dataset positively impacts GWAS power. For more precise breeding, concrete candidate genes with exact functional variants must be discovered. Many post-GWAS methods have been developed to narrow down the associated genomic regions and, ideally, to predict candidate genes and causative mutations (CMs). Historical natural selection and breeding-related artificial selection both act to change the frequencies of different alleles of genes that control phenotypes. With higher diversity and more extensive GWAS datasets, there is an increased chance of multiple alleles with independent CMs in a single causal gene. This can be caused by the presence of samples from geographically isolated regions that arose during natural or artificial selection. This simple fact is a complicating factor in GWAS-driven discoveries. Currently, none of the existing association methods address this issue and need to identify multiple alleles and, more specifically, the actual CMs. Therefore, we developed a tool that computes a score for a combination of variant positions in a single candidate gene and, based on the highest score, identifies the best number and combination of CMs. The tool is publicly available as a Python package on GitHub, and we further created a web-based Multiple Alleles discovery (MADis) tool that supports soybean and is hosted in SoyKB (https://soykb.org/SoybeanMADisTool/). We tested and validated the algorithm and presented the utilization of MADis in a pod pigmentation L1 gene case study with multiple CMs from natural or artificial selection. Finally, we identified a candidate gene for the pod color L2 locus and predicted the existence of multiple alleles that potentially cause loss of pod pigmentation. In this work, we show how a genomic analysis can be employed to explore the natural and artificial selection of multiple alleles and, thus, improve and accelerate crop breeding in agriculture.</p

    DataSheet1_Natural and artificial selection of multiple alleles revealed through genomic analyses.docx

    No full text
    Genome-to-phenome research in agriculture aims to improve crops through in silico predictions. Genome-wide association study (GWAS) is potent in identifying genomic loci that underlie important traits. As a statistical method, increasing the sample quantity, data quality, or diversity of the GWAS dataset positively impacts GWAS power. For more precise breeding, concrete candidate genes with exact functional variants must be discovered. Many post-GWAS methods have been developed to narrow down the associated genomic regions and, ideally, to predict candidate genes and causative mutations (CMs). Historical natural selection and breeding-related artificial selection both act to change the frequencies of different alleles of genes that control phenotypes. With higher diversity and more extensive GWAS datasets, there is an increased chance of multiple alleles with independent CMs in a single causal gene. This can be caused by the presence of samples from geographically isolated regions that arose during natural or artificial selection. This simple fact is a complicating factor in GWAS-driven discoveries. Currently, none of the existing association methods address this issue and need to identify multiple alleles and, more specifically, the actual CMs. Therefore, we developed a tool that computes a score for a combination of variant positions in a single candidate gene and, based on the highest score, identifies the best number and combination of CMs. The tool is publicly available as a Python package on GitHub, and we further created a web-based Multiple Alleles discovery (MADis) tool that supports soybean and is hosted in SoyKB (https://soykb.org/SoybeanMADisTool/). We tested and validated the algorithm and presented the utilization of MADis in a pod pigmentation L1 gene case study with multiple CMs from natural or artificial selection. Finally, we identified a candidate gene for the pod color L2 locus and predicted the existence of multiple alleles that potentially cause loss of pod pigmentation. In this work, we show how a genomic analysis can be employed to explore the natural and artificial selection of multiple alleles and, thus, improve and accelerate crop breeding in agriculture.</p

    Table2_Natural and artificial selection of multiple alleles revealed through genomic analyses.xlsx

    No full text
    Genome-to-phenome research in agriculture aims to improve crops through in silico predictions. Genome-wide association study (GWAS) is potent in identifying genomic loci that underlie important traits. As a statistical method, increasing the sample quantity, data quality, or diversity of the GWAS dataset positively impacts GWAS power. For more precise breeding, concrete candidate genes with exact functional variants must be discovered. Many post-GWAS methods have been developed to narrow down the associated genomic regions and, ideally, to predict candidate genes and causative mutations (CMs). Historical natural selection and breeding-related artificial selection both act to change the frequencies of different alleles of genes that control phenotypes. With higher diversity and more extensive GWAS datasets, there is an increased chance of multiple alleles with independent CMs in a single causal gene. This can be caused by the presence of samples from geographically isolated regions that arose during natural or artificial selection. This simple fact is a complicating factor in GWAS-driven discoveries. Currently, none of the existing association methods address this issue and need to identify multiple alleles and, more specifically, the actual CMs. Therefore, we developed a tool that computes a score for a combination of variant positions in a single candidate gene and, based on the highest score, identifies the best number and combination of CMs. The tool is publicly available as a Python package on GitHub, and we further created a web-based Multiple Alleles discovery (MADis) tool that supports soybean and is hosted in SoyKB (https://soykb.org/SoybeanMADisTool/). We tested and validated the algorithm and presented the utilization of MADis in a pod pigmentation L1 gene case study with multiple CMs from natural or artificial selection. Finally, we identified a candidate gene for the pod color L2 locus and predicted the existence of multiple alleles that potentially cause loss of pod pigmentation. In this work, we show how a genomic analysis can be employed to explore the natural and artificial selection of multiple alleles and, thus, improve and accelerate crop breeding in agriculture.</p

    Table5_Natural and artificial selection of multiple alleles revealed through genomic analyses.xlsx

    No full text
    Genome-to-phenome research in agriculture aims to improve crops through in silico predictions. Genome-wide association study (GWAS) is potent in identifying genomic loci that underlie important traits. As a statistical method, increasing the sample quantity, data quality, or diversity of the GWAS dataset positively impacts GWAS power. For more precise breeding, concrete candidate genes with exact functional variants must be discovered. Many post-GWAS methods have been developed to narrow down the associated genomic regions and, ideally, to predict candidate genes and causative mutations (CMs). Historical natural selection and breeding-related artificial selection both act to change the frequencies of different alleles of genes that control phenotypes. With higher diversity and more extensive GWAS datasets, there is an increased chance of multiple alleles with independent CMs in a single causal gene. This can be caused by the presence of samples from geographically isolated regions that arose during natural or artificial selection. This simple fact is a complicating factor in GWAS-driven discoveries. Currently, none of the existing association methods address this issue and need to identify multiple alleles and, more specifically, the actual CMs. Therefore, we developed a tool that computes a score for a combination of variant positions in a single candidate gene and, based on the highest score, identifies the best number and combination of CMs. The tool is publicly available as a Python package on GitHub, and we further created a web-based Multiple Alleles discovery (MADis) tool that supports soybean and is hosted in SoyKB (https://soykb.org/SoybeanMADisTool/). We tested and validated the algorithm and presented the utilization of MADis in a pod pigmentation L1 gene case study with multiple CMs from natural or artificial selection. Finally, we identified a candidate gene for the pod color L2 locus and predicted the existence of multiple alleles that potentially cause loss of pod pigmentation. In this work, we show how a genomic analysis can be employed to explore the natural and artificial selection of multiple alleles and, thus, improve and accelerate crop breeding in agriculture.</p

    Table7_Natural and artificial selection of multiple alleles revealed through genomic analyses.docx

    No full text
    Genome-to-phenome research in agriculture aims to improve crops through in silico predictions. Genome-wide association study (GWAS) is potent in identifying genomic loci that underlie important traits. As a statistical method, increasing the sample quantity, data quality, or diversity of the GWAS dataset positively impacts GWAS power. For more precise breeding, concrete candidate genes with exact functional variants must be discovered. Many post-GWAS methods have been developed to narrow down the associated genomic regions and, ideally, to predict candidate genes and causative mutations (CMs). Historical natural selection and breeding-related artificial selection both act to change the frequencies of different alleles of genes that control phenotypes. With higher diversity and more extensive GWAS datasets, there is an increased chance of multiple alleles with independent CMs in a single causal gene. This can be caused by the presence of samples from geographically isolated regions that arose during natural or artificial selection. This simple fact is a complicating factor in GWAS-driven discoveries. Currently, none of the existing association methods address this issue and need to identify multiple alleles and, more specifically, the actual CMs. Therefore, we developed a tool that computes a score for a combination of variant positions in a single candidate gene and, based on the highest score, identifies the best number and combination of CMs. The tool is publicly available as a Python package on GitHub, and we further created a web-based Multiple Alleles discovery (MADis) tool that supports soybean and is hosted in SoyKB (https://soykb.org/SoybeanMADisTool/). We tested and validated the algorithm and presented the utilization of MADis in a pod pigmentation L1 gene case study with multiple CMs from natural or artificial selection. Finally, we identified a candidate gene for the pod color L2 locus and predicted the existence of multiple alleles that potentially cause loss of pod pigmentation. In this work, we show how a genomic analysis can be employed to explore the natural and artificial selection of multiple alleles and, thus, improve and accelerate crop breeding in agriculture.</p
    corecore