22 research outputs found

    Lezione 8

    No full text
    κ-carbides of varying composition, seemingly responsible for age hardening in high-Al steel alloys, have been detected to precipitate both at grain boundaries and in the bulk grain of steels. Herein we report the bulk-phase synthesis of “Mn<sub>3</sub>AlC” by arc plasma sintering and rapid solidification. Single crystals have been found suitable for X-ray diffraction using Mo radiation and yield a lattice parameter of <i>a</i> = 3.875(2) Å. We find a mixed occupation of the 1<i>a</i> position by Al and Mn, which, together with the C position being fully occupied, leads to the actual composition Mn<sub>3.1</sub>Al<sub>0.9</sub>C. Additional energy-dispersive X-ray–scanning electron microscopy measurements support the composition and corroborate the homogeneity. SQUID data collected on the polycrystalline ferromagnetic sample exhibit a Curie temperature of about 295 ± 13 K and a soft magnetic behavior. The small but significant nonstoichiometry on 1<i>a</i> leads to a slightly larger lattice parameter, a higher electron count, and, thus, a lowered density of states at the Fermi level, indicative of increased phase stability

    Tuning the Condensation Degree of {Fe<sup>III</sup><sub><i>n</i></sub>} Oxo Clusters via Ligand Metathesis, Temperature, and Solvents

    No full text
    Trinuclear μ<sub>3</sub>-oxo-centered iron­(III) isobutyrate clusters readily react with polyalcohol organic ligands under one-pot synthesis conditions. Depending on the ligand, solvent, and temperature, a range of hexa-, dodeca-, and doicosanuclear iron­(III) oxo-hydroxo condensation products, isolated as (mdeaH<sub>3</sub>)<sub>2</sub>[Fe<sub>6</sub>O­(thme)<sub>4</sub>Cl<sub>6</sub>]·0.5­(MeCN)·0.5­(H<sub>2</sub>O) (<b>1</b>), [Fe<sub>12</sub>O<sub>4</sub>(OH)<sub>2</sub>(teda)<sub>4</sub>(N<sub>3</sub>)<sub>4</sub>(MeO)<sub>4</sub>]­N<sub>3</sub>(NO<sub>3</sub>)<sub>0.5</sub>(MeO)<sub>0.5</sub>·2.5­(H<sub>2</sub>O) (<b>2</b>), [Fe<sub>12</sub>O<sub>6</sub>(teda)<sub>4</sub>Cl<sub>8</sub>]·6­(CHCl<sub>3</sub>) (<b>3</b>), [Fe<sub>22</sub>O<sub>16</sub>(OH)<sub>2</sub>(O<sub>2</sub>CCHMe<sub>2</sub>)<sub>18</sub>(bdea)<sub>6</sub>(EtO)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]·2­(EtOH)·5­(MeCN)·6­(H<sub>2</sub>O) (<b>4</b>), and [Fe<sub>22</sub>O<sub>14</sub>(OH)<sub>4</sub>(O<sub>2</sub>CCHMe<sub>2</sub>)<sub>18</sub>(mdea)<sub>6</sub>(EtO)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]­(NO<sub>3</sub>)<sub>2</sub>·EtOH·H<sub>2</sub>O (<b>5</b>), where tedaH<sub>4</sub> = <i>N</i>,<i>N</i>,<i>N</i>′,<i>N</i>′-tetrakis­(2-hydroxyethyl)­ethylenediamine; thmeH<sub>3</sub> = 1,1,1-tris­(hydroxymethyl)­ethane; mdeaH<sub>2</sub> = <i>N</i>-methyldiethanolamine; and bdeaH<sub>2</sub> = <i>N</i>-butyldiethanolamine. Complete carboxylate metathesis in the {Fe<sub>3</sub>} precursor complexes by thme<sup>3–</sup> or teda<sup>4–</sup> and the agglomeration of the formed species under solvothermal conditions afforded carboxylate-free {Fe<sub>6</sub>} product (<b>1</b>) in MeCN/CH<sub>2</sub>Cl<sub>2</sub> or {Fe<sub>12</sub>} complexes (<b>2</b> and <b>3</b>) in MeOH/EtOH and CHCl<sub>3</sub>/thf, respectively (thf = tetrahydrofuran). Single-crystal X-ray diffraction analyses revealed that <b>1</b> contains a [Fe<sub>6</sub>O­(thme)<sub>4</sub>Cl<sub>6</sub>]<sup>2–</sup> cluster anion with a Lindqvist-type {Fe<sub>6</sub>(μ<sub>6</sub>-O)} core motif, charge-compensated by two protonated mdeaH<sub>3</sub><sup>+</sup> cations. <b>2</b> comprises a [Fe<sub>12</sub>O<sub>4</sub>(OH)<sub>2</sub>(teda)<sub>4</sub>­(N<sub>3</sub>)<sub>4</sub>(MeO)<sub>4</sub>]<sup>2+</sup> cation with a {Fe<sub>12</sub>O<sub>4</sub>(OH)<sub>2</sub>}<sup>26+</sup> core, whereas <b>3</b> contains a charge-neutral [Fe<sub>12</sub>O<sub>6</sub>(teda)<sub>4</sub>(Cl)<sub>8</sub>] complex with an {Fe<sub>12</sub>O<sub>6</sub>}<sup>24+</sup> core. Finally, employing flexible bdeaH<sub>2</sub> or mdeaH<sub>2</sub> ligands under soft reaction conditions afforded giant {Fe<sub>22</sub>} oxo-hydroxo complexes (<b>4</b> and <b>5</b>) with a central {Fe<sub>6</sub>} layer sandwiched between two outer {Fe<sub>8</sub>} groups. Magnetic studies of <b>1</b>–<b>5</b> revealed strong antiferromagnetic coupling between the Fe<sup>III</sup> spin centers in all clusters

    Synthesis, Structure, and Magnetic Properties of a New Family of Tetra-nuclear {Mn<sub>2</sub><sup>III</sup>Ln<sub>2</sub>}(Ln = Dy, Gd, Tb, Ho) Clusters With an Arch-Type Topology: Single-Molecule Magnetism Behavior in the Dysprosium and Terbium Analogues

    No full text
    Sequential reaction of Mn­(II) and lanthanide­(III) salts with a new multidentate ligand, 2,2′-(2-hydroxy-3-methoxy-5-methylbenzylazanediyl)­diethanol (<b>LH</b><sub><b>3</b></sub>), containing two flexible ethanolic arms, one phenolic oxygen, and a methoxy group afforded heterometallic tetranuclear complexes [Mn<sub>2</sub>Dy<sub>2</sub>(LH)<sub>4</sub>(μ-OAc)<sub>2</sub>]­(NO<sub>3</sub>)<sub>2</sub>·2CH<sub>3</sub>OH·3H<sub>2</sub>O (<b>1</b>), [Mn<sub>2</sub>Gd<sub>2</sub>(LH)<sub>4</sub>(μ-OAc)<sub>2</sub>]­(NO<sub>3</sub>)<sub>2</sub>·2CH<sub>3</sub>OH·3H<sub>2</sub>O (<b>2</b>), [Mn<sub>2</sub>Tb<sub>2</sub>(LH)<sub>4</sub>(μ-OAc)<sub>2</sub>]­(NO<sub>3</sub>)<sub>2</sub>·2H<sub>2</sub>O·2CH<sub>3</sub>OH·Et<sub>2</sub>O (<b>3</b>), and [Mn<sub>2</sub>Ho<sub>2</sub>(LH)<sub>4</sub>(μ-OAc)<sub>2</sub>]­Cl<sub>2</sub>·5CH<sub>3</sub>OH (<b>4</b>). All of these dicationic complexes possess an arch-like structural topology containing a central Mn<sup>III</sup>–Ln–Ln–Mn<sup>III</sup> core. The two central lanthanide ions are connected via two phenolate oxygen atoms. The remaining ligand manifold assists in linking the central lanthanide ions with the peripheral Mn­(III) ions. Four doubly deprotonated LH<sup>2–</sup> chelating ligands are involved in stabilizing the tetranuclear assembly. A magnetochemical analysis reveals that single-ion effects dominate the observed susceptibility data for all compounds, with comparably weak Ln···Ln and very weak Ln···Mn­(III) couplings. The axial, approximately square-antiprismatic coordination environment of the Ln<sup>3+</sup> ions in <b>1</b>–<b>4</b> causes pronounced zero-field splitting for Tb<sup>3+</sup>, Dy<sup>3+</sup>, and Ho<sup>3+</sup>. For <b>1</b> and <b>3</b>, the onset of a slowing down of the magnetic relaxation was observed at temperatures below approximately 5 K (<b>1</b>) and 13 K (<b>3</b>) in frequency-dependent alternating current (AC) susceptibility measurements, yielding effective relaxation energy barriers of Δ<i>E</i> = 16.8 cm<sup>–1</sup> (<b>1</b>) and 33.8 cm<sup>–1</sup> (<b>3</b>)

    Synthesis, Structure, and Magnetic Properties of a New Family of Tetra-nuclear {Mn<sub>2</sub><sup>III</sup>Ln<sub>2</sub>}(Ln = Dy, Gd, Tb, Ho) Clusters With an Arch-Type Topology: Single-Molecule Magnetism Behavior in the Dysprosium and Terbium Analogues

    No full text
    Sequential reaction of Mn­(II) and lanthanide­(III) salts with a new multidentate ligand, 2,2′-(2-hydroxy-3-methoxy-5-methylbenzylazanediyl)­diethanol (<b>LH</b><sub><b>3</b></sub>), containing two flexible ethanolic arms, one phenolic oxygen, and a methoxy group afforded heterometallic tetranuclear complexes [Mn<sub>2</sub>Dy<sub>2</sub>(LH)<sub>4</sub>(μ-OAc)<sub>2</sub>]­(NO<sub>3</sub>)<sub>2</sub>·2CH<sub>3</sub>OH·3H<sub>2</sub>O (<b>1</b>), [Mn<sub>2</sub>Gd<sub>2</sub>(LH)<sub>4</sub>(μ-OAc)<sub>2</sub>]­(NO<sub>3</sub>)<sub>2</sub>·2CH<sub>3</sub>OH·3H<sub>2</sub>O (<b>2</b>), [Mn<sub>2</sub>Tb<sub>2</sub>(LH)<sub>4</sub>(μ-OAc)<sub>2</sub>]­(NO<sub>3</sub>)<sub>2</sub>·2H<sub>2</sub>O·2CH<sub>3</sub>OH·Et<sub>2</sub>O (<b>3</b>), and [Mn<sub>2</sub>Ho<sub>2</sub>(LH)<sub>4</sub>(μ-OAc)<sub>2</sub>]­Cl<sub>2</sub>·5CH<sub>3</sub>OH (<b>4</b>). All of these dicationic complexes possess an arch-like structural topology containing a central Mn<sup>III</sup>–Ln–Ln–Mn<sup>III</sup> core. The two central lanthanide ions are connected via two phenolate oxygen atoms. The remaining ligand manifold assists in linking the central lanthanide ions with the peripheral Mn­(III) ions. Four doubly deprotonated LH<sup>2–</sup> chelating ligands are involved in stabilizing the tetranuclear assembly. A magnetochemical analysis reveals that single-ion effects dominate the observed susceptibility data for all compounds, with comparably weak Ln···Ln and very weak Ln···Mn­(III) couplings. The axial, approximately square-antiprismatic coordination environment of the Ln<sup>3+</sup> ions in <b>1</b>–<b>4</b> causes pronounced zero-field splitting for Tb<sup>3+</sup>, Dy<sup>3+</sup>, and Ho<sup>3+</sup>. For <b>1</b> and <b>3</b>, the onset of a slowing down of the magnetic relaxation was observed at temperatures below approximately 5 K (<b>1</b>) and 13 K (<b>3</b>) in frequency-dependent alternating current (AC) susceptibility measurements, yielding effective relaxation energy barriers of Δ<i>E</i> = 16.8 cm<sup>–1</sup> (<b>1</b>) and 33.8 cm<sup>–1</sup> (<b>3</b>)

    Ultralarge 3d/4f Coordination Wheels: From Carboxylate/Amino Alcohol-Supported {Fe<sub>4</sub>Ln<sub>2</sub>} to {Fe<sub>18</sub>Ln<sub>6</sub>} Rings

    No full text
    A family of wheel-shaped charge-neutral heterometallic {Fe<sup>III</sup><sub>4</sub>Ln<sup>III</sup><sub>2</sub>}- and {Fe<sup>III</sup><sub>18</sub>M<sup>III</sup><sub>6</sub>}-type coordination clusters demonstrates the intricate interplay of solvent effects and structure-directing roles of semiflexible bridging ligands. The {Fe<sub>4</sub>Ln<sub>2</sub>}-type compounds [Fe<sub>4</sub>Ln<sub>2</sub>(O<sub>2</sub>CCMe<sub>3</sub>)<sub>6</sub>­(N<sub>3</sub>)<sub>4</sub>(Htea)<sub>4</sub>]·2­(EtOH), Ln = Dy (<b>1a</b>), Er (<b>1b</b>), Ho (<b>1c</b>); [Fe<sub>4</sub>Tb<sub>2</sub>(O<sub>2</sub>CCMe<sub>3</sub>)<sub>6</sub>­(N<sub>3</sub>)<sub>4</sub>(Htea)<sub>4</sub>] (<b>1d</b>); [Fe<sub>4</sub>Ln<sub>2</sub>(O<sub>2</sub>CCMe<sub>3</sub>)<sub>6</sub>­(N<sub>3</sub>)<sub>4</sub>(Htea)<sub>4</sub>]·2­(CH<sub>2</sub>Cl<sub>2</sub>), Ln = Dy (<b>2a</b>), Er (<b>2b</b>); [Fe<sub>4</sub>Ln<sub>2</sub>(O<sub>2</sub>CCMe<sub>3</sub>)<sub>4</sub>­(N<sub>3</sub>)<sub>6</sub>(Htea)<sub>4</sub>]·2­(EtOH)·2­(CH<sub>2</sub>Cl<sub>2</sub>), Ln = Dy (<b>3a</b>), Er (<b>3b</b>) and the {Fe<sub>18</sub>M<sub>6</sub>}-type compounds [Fe<sub>18</sub>M<sub>6</sub>(O<sub>2</sub>CCHMe<sub>2</sub>)<sub>12</sub>­(Htea)<sub>18</sub>(tea)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]·<i>n</i>(solvent), M = Dy (<b>4</b>, <b>4a</b>), Gd (<b>5</b>), Tb (<b>6</b>), Ho (<b>7</b>), Sm (<b>8</b>), Eu (<b>9</b>), and Y (<b>10</b>) form in ca. 20–40% yields in direct reaction of trinuclear Fe<sup>III</sup> pivalate or isobutyrate clusters, lanthanide/yttrium nitrates, and bridging triethanolamine (H<sub>3</sub>tea) and azide ligands in different solvents: EtOH for the smaller {Fe<sub>4</sub>Ln<sub>2</sub>} wheels and MeOH/MeCN or MeOH/EtOH for the larger {Fe<sub>18</sub>M<sub>6</sub>} wheels. Single-crystal X-ray diffraction analyses revealed that <b>1</b>–<b>3</b> consist of planar centrosymmetric hexanuclear clusters built from Fe<sup>III</sup> and Ln<sup>III</sup> ions linked by an array of bridging carboxylate, azide, and aminopolyalcoholato-based ligands into a cyclic structure with a cavity, and with distinct sets of crystal solvents (2 EtOH per formula unit in <b>1a</b>–<b>c</b>, 2 CH<sub>2</sub>Cl<sub>2</sub> in <b>2</b>, and 2 EtOH and 2 CH<sub>2</sub>Cl<sub>2</sub> in <b>3</b>). In <b>4</b>–<b>10</b>, the largest 3d/4f wheels currently known, nearly linear Fe<sub>3</sub> fragments are joined via mononuclear Ln/Y units by a set of isobutyrates and amino alcohol ligands into virtually planar rings. The magnetic properties of <b>1</b>–<b>10</b> reveal slow magnetization relaxation for {Fe<sub>4</sub>Tb<sub>2</sub>} (<b>1d</b>) and slow relaxation for {Fe<sub>4</sub>Ho<sub>2</sub>} (<b>1c</b>), {Fe<sub>18</sub>Dy<sub>6</sub>} (<b>4</b>), and {Fe<sub>18</sub>Tb<sub>6</sub>} (<b>6</b>)

    A V<sub>16</sub>-type Polyoxovanadate Structure with Intricate Electronic Distribution: Insights from Magnetochemistry

    No full text
    The black-green solid (NEt<sub>4</sub>)<sub>5</sub>­[V<sub>16</sub>O<sub>38</sub>(Br)]­·2H<sub>2</sub>O (<b>1</b>) was synthesized by the pH-controlled reaction of a mixed-valence precursor (NH<sub>4</sub>)<sub>8</sub>­[H<sub>9</sub>V<sup>IV</sup><sub>12</sub>V<sup>V</sup><sub>7</sub>O<sub>50</sub>]­·11H<sub>2</sub>O with Et<sub>4</sub>NBr in water under aerobic conditions. Compound <b>1</b> crystallizes as pseudomerohedral three-domain twins with pronounced pseudosymmetry and very large voids accommodating the majority of the countercations and solvent water molecules. The central structural motif of <b>1</b> is represented by a spherical, mixed-valence, host–guest vanadium-oxo cluster [V<sup>IV/V</sup><sub>16</sub>O<sub>38</sub>(Br)]<i><sup>q</sup></i> with <i>q</i> = 5–, 4–, or 6–, exhibiting dominant antiferromagnetic and weaker ferromagnetic exchange interactions. The intriguing valence-state and dependent magnetic behavior of this compound have been unraveled by weighted model Hamiltonian calculations combined with diffraction, quantum mechanical, spectroscopic, and spectrometric techniques. It appears that <b>1</b> features a hitherto not identified and initially not evident V<sup>IV</sup>/V<sup>V</sup> average ratio of 8:8 which corresponds to an average charge <i>q</i> = 5– of the polyoxovanadate. Our study makes a substantial contribution to the further development of methods improving the understanding of poorly soluble mixed-valence polyoxometalates with complex spin architectures

    Assembly of Cerium(III) 2,2′-Bipyridine-5,5′-dicarboxylate-based Metal–Organic Frameworks by Solvent Tuning

    No full text
    Small changes to the reaction conditions differentiate between two metal–organic frameworks (MOFs), {[Ce<sub>2</sub>(H<sub>2</sub>O)­(bpdc)<sub>3</sub>(dmf)<sub>2</sub>]·2­(dmf)}<sub><i>n</i></sub> (<b>1</b>) and {[Ce<sub>4</sub>(H<sub>2</sub>O)<sub>5</sub>(bpdc)<sub>6</sub>(dmf)]·<i>x</i>(dmf)}<sub><i>n</i></sub> (<b>2</b>), that were solvothermally synthesized from cerium­(III) nitrate hexahydrate and 2,2′-bipyridine-5,5′-dicarboxylic acid (H<sub>2</sub>bpdc) in dimethylformamide (dmf). The two compounds illustrate how the flexibility of the coordination geometry of Ce<sup>III</sup> translates into MOFs, the formation of which readily adapts to different solvent environments

    Covalent Co–O–V and Sb–N Bonds Enable Polyoxovanadate Charge Control

    No full text
    The formation of [{Co<sup>II</sup>(teta)<sub>2</sub>}­{Co<sup>II</sup><sub>2</sub>(tren)­(teta)<sub>2</sub>}­V<sup>IV</sup><sub>15</sub>Sb<sup>III</sup><sub>6</sub>O<sub>42</sub>(H<sub>2</sub>O)]·ca.9H<sub>2</sub>O [teta = triethylenetetraamine; tren = tris­(2-aminoethyl)­amine] illustrates a strategy toward reducing the molecular charge of polyoxovanadates, a key challenge in their use as components in single-molecule electronics. Here, a V–O–Co bond to a binuclear Co<sup>2+</sup>-centered complex and a Sb–N bond to the terminal N atom of a teta ligand of a mononuclear Co<sup>2+</sup> complex allow for full charge compensation of the archetypal molecular magnet [V<sub>15</sub>Sb<sub>6</sub>O<sub>42</sub>(H<sub>2</sub>O)]<sup>6–</sup>. Density functional theory based electron localization function analysis demonstrates that the Sb–N bond has an electron density similar to that of a Sb–O bond. Magnetic exchange coupling between the V<sup>IV</sup> and Co<sup>II</sup> spin centers mediated via the Sb–N bridge is comparably weakly antiferromagnetic

    Avoiding Magnetochemical Overparametrization, Exemplified by One-Dimensional Chains of Hexanuclear Iron(III) Pivalate Clusters

    No full text
    One-dimensional chain coordination polymers based on hexanuclear iron­(III) pivalate building blocks and 1,4-dioxane (diox) or 4,4′-bipyridine (4,4′-bpy) bridging ligands, [Fe<sub>6</sub>O<sub>2</sub>(O<sub>2</sub>CH<sub>2</sub>)­(O<sub>2</sub>CCMe<sub>3</sub>)<sub>12</sub>(diox)]<sub><i>n</i></sub> (<b>1</b>) and [Fe<sub>6</sub>O<sub>2</sub>(O<sub>2</sub>CH<sub>2</sub>)­(O<sub>2</sub>CCMe<sub>3</sub>)<sub>12</sub>(4,4′-bpy)]<sub><i>n</i></sub> (<b>2</b>), showcase the utility of the angular overlap model, implemented in the program <i>wxJFinder</i>, in the predictive identification of the relative role of intra- and intercluster coupling

    Ammonothermal Synthesis, Crystal Structure, and Properties of the Ytterbium(II) and Ytterbium(III) Amides and the First Two Rare-Earth-Metal Guanidinates, YbC(NH)<sub>3</sub> and Yb(CN<sub>3</sub>H<sub>4</sub>)<sub>3</sub>

    No full text
    We report the oxidation-controlled synthesis of the ytterbium amides Yb­(NH<sub>2</sub>)<sub>2</sub> and Yb­(NH<sub>2</sub>)<sub>3</sub> and the first rare-earth-metal guanidinates YbC­(NH)<sub>3</sub> and Yb­(CN<sub>3</sub>H<sub>4</sub>)<sub>3</sub> from liquid ammonia. For Yb­(NH<sub>2</sub>)<sub>2</sub>, we present experimental atomic displacement parameters from powder X-ray diffraction (PXRD) and density functional theory (DFT)-derived hydrogen positions for the first time. For Yb­(NH<sub>2</sub>)<sub>3</sub>, the indexing proposal based on PXRD arrives at <i>R</i>3̅, <i>a</i> = 6.2477(2) Å, <i>c</i> = 17.132(1) Å, <i>V</i> = 579.15(4) Å<sup>3</sup>, and <i>Z</i> = 6. The oxidation-controlled synthesis was also applied to make the first rare-earth guanidinates, namely, the doubly deprotonated YbC­(NH)<sub>3</sub> and the singly deprotonated Yb­(CN<sub>3</sub>H<sub>4</sub>)<sub>3</sub>. YbC­(NH)<sub>3</sub> is isostructural with SrC­(NH)<sub>3</sub>, as derived from PXRD (<i>P</i>6<sub>3</sub>/<i>m</i>, <i>a</i> = 5.2596(2) Å, <i>c</i> = 6.6704(2) Å, <i>V</i> = 159.81(1) Å<sup>3</sup>, and <i>Z</i> = 2). Yb­(CN<sub>3</sub>H<sub>4</sub>)<sub>3</sub> crystallizes in a structure derived from the [ReO<sub>3</sub>] type, as studied by powder neutron diffraction (<i>Pn</i>3̅, <i>a</i> = 13.5307(3) Å, <i>V</i> = 2477.22(8) Å<sup>3</sup>, and <i>Z</i> = 8 at 10 K). Electrostatic and hydrogen-bonding interactions cooperate to stabilize the structure with wide and empty channels. The IR spectra of the guanidinates are compared with DFT-calculated phonon spectra to identify the vibrational modes. SQUID magnetometry shows that Yb­(CN<sub>3</sub>H<sub>4</sub>)<sub>3</sub> is a paramagnet with isolated Yb<sup>3+</sup> (4f<sup>13</sup>) ions. A <i>CONDON 2.0</i> fit was used to extract all relevant parameters
    corecore