8 research outputs found

    Bilans wodny zielonego dachu na przykładzie obiektu w dzielnicy Ursynów m.st. Warszawy

    Get PDF
    Celem niniejszej pracy jest przedstawienie wyników badań dotyczących retencji zielonego dachu na przykładzie obiektu położonego w dzielnicy Ursynów m.st. Warszawy. Obiektem badawczym był fragment zielonego patio zbudowanego z substratu będącego mieszaniną torfu, piasku i keramzytu, o miąższości warstwy 25 cm. Warstwę wegetacyjną zielonego tarasu stanowią darń z mieszanki traw oraz krzewy iglaste i liściaste. Do obliczania składowych bilansu wodnego w okresie wegetacji 2008 roku wykorzystano model bilansowy GreenRoof. Badania wykazały, że rozpatrywany zielony dach zretencjonował ponad 99% wody pochodzącej z opadów

    Variation in leaf surface hydrophobicity of wetland plants: the role of plant traits in water retention

    Get PDF
    Leaf surface wetness has numerous physiological and ecological consequences, and the morphological structures on the leaf surface can affect its extent and duration, contributing to interception rates in the scale of the whole ecosystem. Wetland plants have developed morphological adaptations to high water level allowing them to avoid water excess. Droplet contact angle and surface free energy are measurable parameters which relate to how the plant influences water usage and redistribution. We analysed patterns of contact angle and the surface free energy of the adaxial and abaxial surface of 10 wetland plant species and related them to the optimal habitat conditions and functional traits of the plants. Despite the consistent environment of these plants, we found them to vary greatly in terms of leaf surface wettability and surface free energy, with contact angles ranging from 75 to 169° and surface free energy, from 1.32 to 30.38 mJ/m2. Canopy height and leaf longevity were significantly correlated to leaf wettability, whilst SLA (Specific Leaf Area) and leaf shape were not related to hydrophobicity. Investigating adaptations of wetland plants to their environment showed that including wettability and surface free energy in combination with other plant traits improves our understanding of water plant-soil-water interactions in wetland habitats

    Heat Capacity of Drained Peat Soils

    Get PDF
    Soil-specific heat capacity (cp) and volumetric heat capacity (Cv) are recognized as a fundamental soil property essential for the accurate prediction of soil temperature and heat flow. This study presents the analysis of these thermal properties for drained peat soils in Poland. The objectives of this study were to (i) measure and develop a method for determining cp, (ii) analyze the (Cv) data for undisturbed soil samples from surface layers, and (iii) test the applicability of the cp value for calculating Cv of drained peat soils using the mixing model concept. The cp value was measured under laboratory conditions using a modulated differential scanning calorimetry (MDSC) for 18 soil layers sampled in six degraded peat soil profiles. The Cv was estimated for undisturbed triplicate soil samples from the 22 depths (66 samples) by using a dual-needle probe. The cp data for the organic soils were linearly temperature-dependent (MDSC) for the temperature range considered (−20–30 °C). The overall average cp value was equal to 1.202 J g−1 K−1 at a temperature of 0 °C. An increment in temperature of 1 °C corresponded to an increase in cp of 0.0043 J g−1 K−1 on average. Nevertheless, the lowest cp value was obtained for moss samples whereas the highest value represents alder peats. The Cv data measured using the heat thermal probe (HTP) method changed linearly with changes in the soil moisture content (θv) of the moorsh soils. The volumetric heat capacity calculated using the mixing model was comparable to the mean of measured values obtained on the triplicate samples.</jats:p

    Changes in Temperature and Moisture Content of an Extensive-Type Green Roof

    No full text
    Green roofs ought to be perceived as ensuring a wide-ranging contribution to the sustainable urban environment. The aim of the study was; (1) to investigate and analyse the differences in the surface temperature between four models of green roofs of the extensive type and a conventional roof (covered with bitumen) under the conditions of a continental climate; (2) to assess the influence of environmental parameters (climatic water balance, air temperature, relative humidity, moisture content in the profile) on changes in the temperature of the extensive type green roof profile (substrate and vegetation mat). The study (1) was carried out during the period of June&#8722;December 2016 using a thermal imaging camera. As a result, the greatest differences in temperature were noted in June and July, with a maximum difference between the temporary surface temperature of a green roof and a conventional roof of up to 24 &#176;C. The (2) study was conducted on a green roof profile with sedum plant vegetation. The measured parameters were: the temperature of the surface, the temperature and humidity at depths of 3 cm and 15 cm, and active radiation in the photosynthesis process (PAR). As the result, the range of daily changes in the surface temperatures and the vegetation mat were higher than the range of changes in the air temperature. Atmospheric precipitation decreased the thermal gradient in the soil, as well as the temperature fluctuations in the course of a day as a result of the increase in humidity following a rainfall. During the summer period, over the course of a day, the surface temperature was 5 &#176;C higher than the air temperature. The largest correlation was obtained between the air temperature and the temperature of the surface as well as the temperature of the structural layers

    Heat Capacity of Drained Peat Soils

    No full text
    Soil-specific heat capacity (cp) and volumetric heat capacity (Cv) are recognized as a fundamental soil property essential for the accurate prediction of soil temperature and heat flow. This study presents the analysis of these thermal properties for drained peat soils in Poland. The objectives of this study were to (i) measure and develop a method for determining cp, (ii) analyze the (Cv) data for undisturbed soil samples from surface layers, and (iii) test the applicability of the cp value for calculating Cv of drained peat soils using the mixing model concept. The cp value was measured under laboratory conditions using a modulated differential scanning calorimetry (MDSC) for 18 soil layers sampled in six degraded peat soil profiles. The Cv was estimated for undisturbed triplicate soil samples from the 22 depths (66 samples) by using a dual-needle probe. The cp data for the organic soils were linearly temperature-dependent (MDSC) for the temperature range considered (&minus;20&ndash;30 &deg;C). The overall average cp value was equal to 1.202 J g&minus;1 K&minus;1 at a temperature of 0 &deg;C. An increment in temperature of 1 &deg;C corresponded to an increase in cp of 0.0043 J g&minus;1 K&minus;1 on average. Nevertheless, the lowest cp value was obtained for moss samples whereas the highest value represents alder peats. The Cv data measured using the heat thermal probe (HTP) method changed linearly with changes in the soil moisture content (&theta;v) of the moorsh soils. The volumetric heat capacity calculated using the mixing model was comparable to the mean of measured values obtained on the triplicate samples

    The Leaf Wettability of Various Potato Cultivars

    No full text
    Leaf wettability has an impact on a plant&rsquo;s ability to retain water on its leaf surface, which in turn has many environmental consequences. In the case of the potato leaf (Solanum tuberosum L.), water on the leaf surface may contribute to the development of a fungal disease. If fungal disease is caused, this may reduce the size of potato harvests, which contribute significantly to meeting global food demand. The aim of this study was to assess the leaf wettability of five potato cultivars (i.e., Bryza, Lady Claire, Rudawa, Russet Burbank, Sweet Caroline) in the context of its direct and indirect impact on potato yield. Leaf wettability was assessed on the basis of contact angle measurements using a sessile drop method with an optical goniometer. For Bryza and Rudawa cultivars, which showed, respectively, the highest and the lowest contact angle values, light microscopy as well as scanning electron microscopy analyses were performed. The results of the contact angle measurements and microscopic image analyses of the potato leaf surfaces indicated that the level of wettability was closely related to the type of trichomes on the leaf and their density. Therefore, higher resistance of the Rudawa cultivar to biotic stress conditions could be the result of the presence of two glandular trichome types (VI and VII), which produce and secrete metabolites containing various sticky and/or toxic chemicals that may poison or repel herbivores

    Remotely Sensed Land Surface Temperature-Based Water Stress Index for Wetland Habitats

    No full text
    Despite covering only 2&ndash;6% of land, wetland ecosystems play an important role at the local and global scale. They provide various ecosystem services (carbon dioxide sequestration, pollution removal, water retention, climate regulation, etc.) as long as they are in good condition. By definition, wetlands are rich in water ecosystems. However, ongoing climate change with an ambiguous balance of rain in a temperate climate zone leads to drought conditions. Such periods interfere with the natural processes occurring on wetlands and restrain the normal functioning of wetland ecosystems. Persisting unfavorable water conditions lead to irreversible changes in wetland habitats. Hence, the monitoring of habitat changes caused by an insufficient amount of water (plant water stress) is necessary. Unfortunately, due to the specific conditions of wetlands, monitoring them by both traditional and remote sensing techniques is challenging, and research on wetland water stress has been insufficient. This paper describes the adaptation of the thermal water stress index, also known as the crop water stress index (CWSI), for wetlands. This index is calculated based on land surface temperature and meteorological parameters (temperature and vapor pressure deficit&mdash;VPD). In this study, an unmanned aerial system (UAS) was used to measure land surface temperature. Performance of the CWSI was confirmed by the high correlation with field measurements of a fraction of absorbed photosynthetically active radiation (R = &minus;0.70) and soil moisture (R = &minus;0.62). Comparison of the crop water stress index with meteorological drought indices showed that the first phase of drought (meteorological drought) cannot be detected with this index. This study confirms the potential of using the CWSI as a water stress indicator in wetland ecosystems
    corecore