18 research outputs found

    Combination of Fetal Fraction Estimators Based on Fragment Lengths and Fragment Counts in Non-Invasive Prenatal Testing

    No full text
    The reliability of non-invasive prenatal testing is highly dependent on accurate estimation of fetal fraction. Several methods have been proposed up to date, utilizing different attributes of analyzed genomic material, for example length and genomic location of sequenced DNA fragments. These two sources of information are relatively unrelated, but so far, there have been no published attempts to combine them to get an improved predictor. We collected 2454 single euploid male fetus samples from women undergoing NIPT testing. Fetal fractions were calculated using several proposed predictors and the state-of-the-art SeqFF method. Predictions were compared with the reference Y-based method. We demonstrate that prediction based on length of sequenced DNA fragments may achieve nearly the same precision as the state-of-the-art methods based on their genomic locations. We also show that combination of several sample attributes leads to a predictor that has superior prediction accuracy over any single approach. Finally, appropriate weighting of samples in the training process may achieve higher accuracy for samples with low fetal fraction and so allow more reliability for subsequent testing for genomic aberrations. We propose several improvements in fetal fraction estimation with a special focus on the samples most prone to wrong conclusion

    Identification of Structural Variation from NGS-Based Non-Invasive Prenatal Testing

    No full text
    Copy number variants (CNVs) are an important type of human genome variation, which play a significant role in evolution contribute to population diversity and human genetic diseases. In recent years, next generation sequencing has become a valuable tool for clinical diagnostics and to provide sensitive and accurate approaches for detecting CNVs. In our previous work, we described a non-invasive prenatal test (NIPT) based on low-coverage massively parallel whole-genome sequencing of total plasma DNA for detection of CNV aberrations ≥600 kbp. We reanalyzed NIPT genomic data from 5018 patients to evaluate CNV aberrations in the Slovak population. Our analysis of autosomal chromosomes identified 225 maternal CNVs (47 deletions; 178 duplications) ranging from 600 to 7820 kbp. According to the ClinVar database, 137 CNVs (60.89%) were fully overlapping with previously annotated variants, 66 CNVs (29.33%) were in partial overlap, and 22 CNVs (9.78%) did not overlap with any previously described variant. Identified variants were further classified with the AnnotSV method. In summary, we identified 129 likely benign variants, 13 variants of uncertain significance, and 83 likely pathogenic variants. In this study, we use NIPT as a valuable source of population specific data. Our results suggest the utility of genomic data from commercial CNV analysis test as background for a population study

    Copy Number Variation: Methods and Clinical Applications

    No full text
    Gains and losses of large segments of genomic DNA, known as copy number variants (CNVs) gained considerable interest in clinical diagnostics lately, as particular forms may lead to inherited genetic diseases. In recent decades, researchers developed a wide variety of cytogenetic and molecular methods with different detection capabilities to detect clinically relevant CNVs. In this review, we summarize methodological progress from conventional approaches to current state of the art techniques capable of detecting CNVs from a few bases up to several megabases. Although the recent rapid progress of sequencing methods has enabled precise detection of CNVs, determining their functional effect on cellular and whole-body physiology remains a challenge. Here, we provide a comprehensive list of databases and bioinformatics tools that may serve as useful assets for researchers, laboratory diagnosticians, and clinical geneticists facing the challenge of CNV detection and interpretation

    Technical and Methodological Aspects of Cell-Free Nucleic Acids Analyzes

    No full text
    Analyzes of cell-free nucleic acids (cfNAs) have shown huge potential in many biomedical applications, gradually entering several fields of research and everyday clinical care. Many biological properties of cfNAs can be informative to gain deeper insights into the function of the organism, such as their different types (DNA, RNAs) and subtypes (gDNA, mtDNA, bacterial DNA, miRNAs, etc.), forms (naked or vesicle bound NAs), fragmentation profiles, sequence composition, epigenetic modifications, and many others. On the other hand, the workflows of their analyzes comprise many important steps, from sample collection, storage and transportation, through extraction and laboratory analysis, up to bioinformatic analyzes and statistical evaluations, where each of these steps has the potential to affect the outcome and informational value of the performed analyzes. There are, however, no universal or standard protocols on how to exactly proceed when analyzing different cfNAs for different applications, at least according to our best knowledge. We decided therefore to prepare an overview of the available literature and products commercialized for cfNAs processing, in an attempt to summarize the benefits and limitations of the currently available approaches, devices, consumables, and protocols, together with various factors influencing the workflow, its processes, and outcomes

    Copy Number Variation: Methods and Clinical Applications

    No full text
    Gains and losses of large segments of genomic DNA, known as copy number variants (CNVs) gained considerable interest in clinical diagnostics lately, as particular forms may lead to inherited genetic diseases. In recent decades, researchers developed a wide variety of cytogenetic and molecular methods with different detection capabilities to detect clinically relevant CNVs. In this review, we summarize methodological progress from conventional approaches to current state of the art techniques capable of detecting CNVs from a few bases up to several megabases. Although the recent rapid progress of sequencing methods has enabled precise detection of CNVs, determining their functional effect on cellular and whole-body physiology remains a challenge. Here, we provide a comprehensive list of databases and bioinformatics tools that may serve as useful assets for researchers, laboratory diagnosticians, and clinical geneticists facing the challenge of CNV detection and interpretation

    Characterisation of Non-Pathogenic Premutation-Range Myotonic Dystrophy Type 2 Alleles

    No full text
    Myotonic dystrophy type 2 (DM2) is caused by expansion of a (CCTG)n repeat in the cellular retroviral nucleic acid-binding protein (CNBP) gene. The sequence of the repeat is most commonly interrupted and is stably inherited in the general population. Although expanded alleles, premutation range and, in rare cases, also non-disease associated alleles containing uninterrupted CCTG tracts have been described, the threshold between these categories is poorly characterised. Here, we describe four families with members reporting neuromuscular complaints, in whom we identified altogether nine ambiguous CNBP alleles containing uninterrupted CCTG repeats in the range between 32 and 42 repeats. While these grey-zone alleles are most likely not pathogenic themselves, since other pathogenic mutations were identified and particular family structures did not support their pathogenic role, they were found to be unstable during intergenerational transmission. On the other hand, there was no observable general microsatellite instability in the genome of the carriers of these alleles. Our results further refine the division of CNBP CCTG repeat alleles into two major groups, i.e., interrupted and uninterrupted alleles. Both interrupted and uninterrupted alleles with up to approximately 30 CCTG repeats were shown to be generally stable during intergenerational transmission, while intergenerational as well as somatic instability seems to gradually increase in uninterrupted alleles with tract length growing above this threshold
    corecore