2 research outputs found

    Physicochemical Properties and Supernucleophilicity of Oxime-Functionalized Surfactants: Hydrolytic Catalysts toward Dephosphorylation of Di- and Triphosphate Esters

    No full text
    Aggregation and kinetic studies have been performed to understand the hydrolytic potencies of the series of oxime-functionalized surfactants, viz., 3- hydroxyiminomethyl-1-alkylpyridinium bromide (alkyl = C<sub><i>n</i></sub>H<sub>2<i>n</i>+1</sub>, <i>n</i> = 10, 12, 14, 16, 18) in the cleavage of phosphate esters, <i>p</i>-nitrophenyl diphenyl phosphate (PNPDPP) and bis­(2,4-dinitrophenyl) phosphate (BNDPP), in mixed micelles with cetylpyridinium bromide (CPB). Micellization and surface properties of mixed micelles functional surfactants with CPB were studied by conductivity and surface tension measurements. Acid dissociation constants (p<i>K</i><sub>a</sub>) were determined, the effect of functional surfactant alkyl chain length and pH on the observed rate constant (<i>k</i><sub>obs</sub>) for phosphate ester cleavage has been discussed, and the effect of substrate on the supernucleophilicities of the studied oximes was monitored. Functionalized oxime-based surfactants were proved to be supernucleophiles to attack on the PO center of tri- and diphosphate esters. Oximes with hexadecyl alkyl chain length (3-C<sub>16</sub>) showed maximum micellar effect on the rate constants toward PNPDPP. Micellar effects were analyzed in terms of the pseudophase model

    Geochemical and Microbiological Characteristics during in Situ Chemical Oxidation and in Situ Bioremediation at a Diesel Contaminated Site

    No full text
    While in situ chemical oxidation with persulfate has seen wide commercial application, investigations into the impacts on groundwater characteristics, microbial communities and soil structure are limited. To better understand the interactions of persulfate with the subsurface and to determine the compatibility with further bioremediation, a pilot scale treatment at a diesel-contaminated location was performed consisting of two persulfate injection events followed by a single nutrient amendment. Groundwater parameters measured throughout the 225 day experiment showed a significant decrease in pH and an increase in dissolved diesel and organic carbon within the treatment area. Molecular analysis of the microbial community size (16S rRNA gene) and alkane degradation capacity (<i>alkB</i> gene) by qPCR indicated a significant, yet temporary impact; while gene copy numbers initially decreased 1–2 orders of magnitude, they returned to baseline levels within 3 months of the first injection for both targets. Analysis of soil samples with sequential extraction showed irreversible oxidation of metal sulfides, thereby changing subsurface mineralogy and potentially mobilizing Fe, Cu, Pb, and Zn. Together, these results give insight into persulfate application in terms of risks and effective coupling with bioremediation
    corecore