51 research outputs found

    Biomarkers and Cellular Biology in Perioperative Medicine.

    Get PDF
    Surgical procedures alter tissue integrity; are associated with pain and activation of the sympathetic nervous system; and sometimes, cause exposure to foreign materials used during the surgery or implanted perioperatively [...]

    Intravenous Sphingosylphosphorylcholine Protects Ischemic and Postischemic Myocardial Tissue in a Mouse Model of Myocardial Ischemia/Reperfusion Injury

    Get PDF
    HDL, through sphingosine-1-phosphate (S1P), exerts direct cardioprotective effects on ischemic myocardium. It remains unclear whether other HDL-associated sphingophospholipids have similar effects. We therefore examined if HDL-associated sphingosylphosphorylcholine (SPC) reduces infarct size in a mouse model of transient myocardial ischemia/reperfusion. Intravenously administered SPC dose-dependently reduced infarct size after 30 minutes of myocardial ischemia and 24 hours reperfusion compared to controls. Infarct size was also reduced by postischemic, therapeutical administration of SPC. Immunohistochemistry revealed reduced polymorphonuclear neutrophil recruitment to the infarcted area after SPC treatment, and apoptosis was attenuated as measured by TUNEL. In vitro, SPC inhibited leukocyte adhesion to TNFα-activated endothelial cells and protected rat neonatal cardiomyocytes from apoptosis. S1P3 was identified as the lysophospholipid receptor mediating the cardioprotection by SPC, since its effect was completely absent in S1P3-deficient mice. We conclude that HDL-associated SPC directly protects against myocardial reperfusion injury in vivo via the S1P3 receptor

    Sequential Surgical Procedures in Vascular Surgery Patients Are Associated With Perioperative Adverse Cardiac Events

    Get PDF
    Patients at elevated cardiovascular risk are prone to perioperative cardiovascular complications, like myocardial injury after non-cardiac surgery (MINS). We have demonstrated in a mouse model of atherosclerosis that perioperative stress leads to an increase in plaque volume and higher plaque vulnerability. Regulatory T cells (Tregs) play a pivotal role in development and destabilization of atherosclerotic plaques. For this exploratory post-hoc analysis we identified 40 patients recruited into a prospective perioperative biomarker study, who within the inclusion period underwent sequential open vascular surgery. On the basis of protein markers measured in the biomarker study, we evaluated the perioperative inflammatory response in patients' plasma before and after index surgery as well as before and after a second surgical procedure. We also analyzed available immunohistochemistry samples to describe plaque vulnerability in patients who underwent bilateral carotid endarterectomy (CEA) in two subsequent surgical procedures. Finally, we assessed if MINS was associated with sequential surgery. The inflammatory response of both surgeries was characterized by postoperative increases of interleukin-6,−10, Pentraxin 3 and C-reactive protein with no clear-cut difference between the two time points of surgery. Plaques from CEA extracted during the second surgery contained less Tregs, as measured by Foxp3 staining, than plaques from the first intervention. The 2nd surgical procedure was associated with MINS. In conclusion, we provide descriptive evidence that sequential surgical procedures involve repeat inflammation, and we hypothesize that elevated rates of cardiovascular complications after the second procedure could be related to reduced levels of intraplaque Tregs, a finding that deserves confirmatory testing and mechanistic exploration in future populations

    Acute perioperative-stress-induced increase of atherosclerotic plaque volume and vulnerability to rupture in apolipoprotein-E-deficient mice is amenable to statin treatment and IL-6 inhibition

    Get PDF
    Myocardial infarction and stroke are frequent after surgical procedures and consume a considerable amount of benefit of surgical therapy. Perioperative stress, induced by surgery, is composed of hemodynamic and inflammatory reactions. The effects of perioperative stress on atherosclerotic plaques are ill-defined. Murine models to investigate the influence of perioperative stress on plaque stability and rupture are not available. We developed a model to investigate the influence of perioperative stress on plaque growth and stability by exposing apolipoprotein-E-deficient mice, fed a high cholesterol diet for 7 weeks, to a double hit consisting of 30 min of laparotomy combined with a substantial blood loss (approximately 20% of total blood volume; 400 µl). The innominate artery was harvested 72 h after the intervention. Control groups were sham and baseline controls. Interleukin-6 (IL-6) and serum amyloid A (SAA) plasma levels were determined. Plaque load, vascular smooth muscle cell (VSMC) and macrophage content were quantified. Plaque stability was assessed using the Stary score and frequency of signs of plaque rupture were assessed. High-dose atorvastatin (80 mg/kg body weight/day) was administered for 6 days starting 3 days prior to the double hit. A single dose of an IL-6-neutralizing antibody or the fusion protein gp130-Fc selectively targeting IL-6 trans-signaling was subcutaneously injected. IL-6 plasma levels increased, peaking at 6 h after the intervention. SAA levels peaked at 24 h (n=4, P<0.01). Plaque volume increased significantly with the double hit compared to sham (n=8, P<0.01). More plaques were scored as complex or bearing signs of rupture after the double hit compared to sham (n=5-8, P<0.05). Relative VSMC and macrophage content remained unchanged. IL-6-inhibition or atorvastatin, but not blocking of IL-6 trans-signaling, significantly decreased plaque volume and complexity (n=8, P<0.01). Using this model, researchers will be able to further investigate the pathophysiology of perioperative plaque stability, which can result in myocardial infarction, and, additionally, to test potential protective strategies

    Biomarker-guided intervention to prevent acute kidney injury after major surgery (BigpAK-2 trial): study protocol for an international, prospective, randomised controlled multicentre trial

    Full text link
    IntroductionPrevious studies demonstrated that the implementation of the Kidney Disease Improving Global Outcomes (KDIGO) guideline-based bundle, consisting of different supportive measures in patients at high risk for acute kidney injury (AKI), might reduce rate and severity of AKI after surgery. However, the effects of the care bundle in broader population of patients undergoing surgery require confirmation.Methods and analysisThe BigpAK-2 trial is an international, randomised, controlled, multicentre trial. The trial aims to enrol 1302 patients undergoing major surgery who are subsequently admitted to the intensive care or high dependency unit and are at high-risk for postoperative AKI as identified by urinary biomarkers (tissue inhibitor of metalloproteinases 2*insulin like growth factor binding protein 7 (TIMP-2)*IGFBP7)). Eligible patients will be randomised to receive either standard of care (control) or a KDIGO-based AKI care bundle (intervention). The primary endpoint is the incidence of moderate or severe AKI (stage 2 or 3) within 72 hours after surgery, according to the KDIGO 2012 criteria. Secondary endpoints include adherence to the KDIGO care bundle, occurrence and severity of any stage of AKI, change in biomarker values during 12 hours after initial measurement of (TIMP-2)*(IGFBP7), number of free days of mechanical ventilation and vasopressors, need for renal replacement therapy (RRT), duration of RRT, renal recovery, 30-day and 60-day mortality, intensive care unit length-of-stay and hospital length-of-stay and major adverse kidney events. An add-on study will investigate blood and urine samples from recruited patients for immunological functions and kidney damage.Ethics and disseminationThe BigpAK-2 trial was approved by the Ethics Committee of the Medical Faculty of the University of Münster and subsequently by the corresponding Ethics Committee of the participating sites. A study amendment was approved subsequently. In the UK, the trial was adopted as an NIHR portfolio study. Results will be disseminated widely and published in peer-reviewed journals, presented at conferences and will guide patient care and further research.Trial registration numberNCT04647396

    NT-proBNP or Self-Reported Functional Capacity in Estimating Risk of Cardiovascular Events After Noncardiac Surgery

    Get PDF
    ImportanceNearly 16 million surgical procedures are conducted in North America yearly, and postoperative cardiovascular events are frequent. Guidelines suggest functional capacity or B-type natriuretic peptides (BNP) to guide perioperative management. Data comparing the performance of these approaches are scarce.ObjectiveTo compare the addition of either N-terminal pro-BNP (NT-proBNP) or self-reported functional capacity to clinical scores to estimate the risk of major adverse cardiac events (MACE).Design, Setting, and ParticipantsThis cohort study included patients undergoing inpatient, elective, noncardiac surgery at 25 tertiary care hospitals in Europe between June 2017 and April 2020. Analysis was conducted in January 2023. Eligible patients were either aged 45 years or older with a Revised Cardiac Risk Index (RCRI) of 2 or higher or a National Surgical Quality Improvement Program, Risk Calculator for Myocardial Infarction and Cardiac (NSQIP MICA) above 1%, or they were aged 65 years or older and underwent intermediate or high-risk procedures.ExposuresPreoperative NT-proBNP and the following self-reported measures of functional capacity were the exposures: (1) questionnaire-estimated metabolic equivalents (METs), (2) ability to climb 1 floor, and (3) level of regular physical activity.Main Outcome and MeasuresMACE was defined as a composite end point of in-hospital cardiovascular mortality, cardiac arrest, myocardial infarction, stroke, and congestive heart failure requiring transfer to a higher unit of care.ResultsA total of 3731 eligible patients undergoing noncardiac surgery were analyzed; 3597 patients had complete data (1258 women [35.0%]; 1463 (40.7%) aged 75 years or older; 86 [2.4%] experienced a MACE). Discrimination of NT-proBNP or functional capacity measures added to clinical scores did not significantly differ (Area under the receiver operating curve: RCRI, age, and 4MET, 0.704; 95% CI, 0.646-0.763; RCRI, age, and 4MET plus floor climbing, 0.702; 95% CI, 0.645-0.760; RCRI, age, and 4MET plus physical activity, 0.724; 95% CI, 0.672-0.775; RCRI, age, and 4MET plus NT-proBNP, 0.736; 95% CI, 0.682-0.790). Benefit analysis favored NT-proBNP at a threshold of 5% or below, ie, if true positives were valued 20 times or more compared with false positives. The findings were similar for NSQIP MICA as baseline clinical scores.Conclusions and relevanceIn this cohort study of nearly 3600 patients with elevated cardiovascular risk undergoing noncardiac surgery, there was no conclusive evidence of a difference between a NT-proBNP–based and a self-reported functional capacity–based estimate of MACE risk.Trial RegistrationClinicalTrials.gov Identifier: NCT0301693

    Heme Oxygenase-1 Inhibits HLA Class I Antibody-Dependent Endothelial Cell Activation

    No full text
    Antibody-mediated rejection (AMR) is a key limiting factor for long-term graft survival in solid organ transplantation. Human leukocyte antigen (HLA) class I (HLA I) antibodies (Abs) play a major role in the pathogenesis of AMR via their interactions with HLA molecules on vascular endothelial cells (ECs). The antioxidant enzyme heme oxygenase (HO)-1 has anti-inflammatory functions in the endothelium. As complement-independent effects of HLA I Abs can activate ECs, it was the goal of the current study to investigate the role of HO-1 on activation of human ECs by HLA I Abs. In cell cultures of various primary humanmacro- and microvascular ECs treatment with monoclonal pan-and allele-specific HLA I Abs up-regulated the expression of inducible proinflammatory adhesion molecules and chemokines (vascular cell adhesion molecule-1 [VCAM-1], intercellular cell adhesion molecule-1 [ICAM-1], interleukin-8 [IL-8] and monocyte chemotactic protein 1 [MCP-1]). Pharmacological induction of HO-1 with cobalt-protoporphyrin IX reduced, whereas inhibition of HO-1 with either zinc-protoporphyrin IX or siRNA-mediated knockdown increased HLA I Ab-dependent up-regulation of VCAM-1. Treatment with two carbon monoxide (CO)-releasing molecules, which liberate the gaseous HO product CO, blocked HLA I Ab-dependent EC activation. Finally, in an in vitro adhesion assay exposure of ECs to HLA I Abs led to increased monocyte binding, which was counteracted by up-regulation of HO-1. In conclusion, HLA I Ab-dependent EC activation is modulated by endothelial HO-1 and targeted induction of this enzyme may be a novel therapeutic approach for the treatment of AMR in solid organ transplantation
    corecore