5 research outputs found

    Bioethanol Blending Reduces Nanoparticle, PAH, and Alkyl- and Nitro-PAH Emissions and the Genotoxic Potential of Exhaust from a Gasoline Direct Injection Flex-Fuel Vehicle

    No full text
    Bioethanol as an alternative fuel is widely used as a substitute for gasoline and also in gasoline direct injection (GDI) vehicles, which are quickly replacing traditional port-fuel injection (PFI) vehicles. Better fuel efficiency and increased engine power are reported advantages of GDI vehicles. However, increased emissions of soot-like nanoparticles are also associated with GDI technology with yet unknown health impacts. In this study, we compare emissions of a flex-fuel Euro-5 GDI vehicle operated with gasoline (E0) and two ethanol/gasoline blends (E10 and E85) under transient and steady driving conditions and report effects on particle, polycyclic aromatic hydrocarbon (PAH), and alkyl- and nitro-PAH emissions and assess their genotoxic potential. Particle number emissions when operating the vehicle in the hWLTC (hot started worldwide harmonized light-duty vehicle test cycle) with E10 and E85 were lowered by 97 and 96% compared with that of E0. CO emissions dropped by 81 and 87%, while CO<sub>2</sub> emissions were reduced by 13 and 17%. Emissions of selected PAHs were lowered by 67–96% with E10 and by 82–96% with E85, and the genotoxic potentials dropped by 72 and 83%, respectively. Ethanol blending appears to reduce genotoxic emissions on this specific flex-fuel GDI vehicle; however, other GDI vehicle types should be analyzed

    Test-Methods on the Test-Bench: A Comparison of Complete Exhaust and Exhaust Particle Extracts for Genotoxicity/Mutagenicity Assessment

    No full text
    With the growing number of new exhaust after-treatment systems, fuels and fuel additives for internal combustion engines, efficient and reliable methods for detecting exhaust genotoxicity and mutagenicity are needed to avoid the widespread application of technologies with undesirable effects toward public health. In a commonly used approach, organic extracts of particulates rather than complete exhaust is used for genotoxicity/mutagenicity assessment, which may reduce the reliability of the results. In the present study, we assessed the mutagenicity and the genotoxicity of complete diesel exhaust compared to an organic exhaust particle extract from the same diesel exhaust in a bacterial and a eukaryotic system, that is, a complex human lung cell model. Both, complete exhaust and organic extract were found to act mutagenic/genotoxic, but the amplitudes of the effects differed considerably. Furthermore, our data indicate that the nature of the mutagenicity may not be identical for complete exhaust and particle extracts. Because in addition, differences between the responses of the different biological systems were found, we suggest that a comprehensive assessment of exhaust toxicity is preferably performed with complete exhaust and with biological systems representative for the organisms and organs of interest (i.e., human lungs) and not only with the Ames test

    Effects of a Combined Diesel Particle Filter-DeNOx System (DPN) on Reactive Nitrogen Compounds Emissions: A Parameter Study

    No full text
    The impact of a combined diesel particle filter-deNO<sub><i>x</i></sub> system (DPN) on emissions of reactive nitrogen compounds (RNCs) was studied varying the urea feed factor (α), temperature, and residence time, which are key parameters of the deNO<sub><i>x</i></sub> process. The DPN consisted of a platinum-coated cordierite filter and a vanadia-based deNO<sub><i>x</i></sub> catalyst supporting selective catalytic reduction (SCR) chemistry. Ammonia (NH<sub>3</sub>) is produced in situ from thermolysis of urea and hydrolysis of isocyanic acid (HNCO). HNCO and NH<sub>3</sub> are both toxic and highly reactive intermediates. The deNO<sub><i>x</i></sub> system was only part-time active in the ISO8178/4 C1cycle. Urea injection was stopped and restarted twice. Mean NO and NO<sub>2</sub> conversion efficiencies were 80%, 95%, 97% and 43%, 87%, 99%, respectively, for α = 0.8, 1.0, and 1.2. HNCO emissions increased from 0.028 g/h engine-out to 0.18, 0.25, and 0.26 g/h at α = 0.8, 1.0, and 1.2, whereas NH<sub>3</sub> emissions increased from <0.045 to 0.12, 1.82, and 12.8 g/h with maxima at highest temperatures and shortest residence times. Most HNCO is released at intermediate residence times (0.2–0.3 s) and temperatures (300–400 °C). Total RNC efficiencies are highest at α = 1.0, when comparable amounts of reduced and oxidized compounds are released. The DPN represents the most advanced system studied so far under the VERT protocol achieving high conversion efficiencies for particles, NO, NO<sub>2</sub>, CO, and hydrocarbons. However, we observed a trade-off between deNO<sub><i>x</i></sub> efficiency and secondary emissions. Therefore, it is important to adopt such DPN technology to specific application conditions to take advantage of reduced NO<sub><i>x</i></sub> and particle emissions while avoiding NH<sub>3</sub> and HNCO slip

    Biofuel-Promoted Polychlorinated Dibenzodioxin/furan Formation in an Iron-Catalyzed Diesel Particle Filter

    No full text
    Iron-catalyzed diesel particle filters (DPFs) are widely used for particle abatement. Active catalyst particles, so-called fuel-borne catalysts (FBCs), are formed <i>in situ</i>, in the engine, when combusting precursors, which were premixed with the fuel. The obtained iron oxide particles catalyze soot oxidation in filters. Iron-catalyzed DPFs are considered as safe with respect to their potential to form polychlorinated dibenzodioxins/furans (PCDD/Fs). We reported that a bimetallic potassium/iron FBC supported an intense PCDD/F formation in a DPF. Here, we discuss the impact of fatty acid methyl ester (FAME) biofuel on PCDD/F emissions. The iron-catalyzed DPF indeed supported a PCDD/F formation with biofuel but remained inactive with petroleum-derived diesel fuel. PCDD/F emissions (I-TEQ) increased 23-fold when comparing biofuel and diesel data. Emissions of 2,3,7,8-TCDD, the most toxic congener [toxicity equivalence factor (TEF) = 1.0], increased 90-fold, and those of 2,3,7,8-TCDF (TEF = 0.1) increased 170-fold. Congener patterns also changed, indicating a preferential formation of tetra- and penta-chlorodibenzofurans. Thus, an inactive iron-catalyzed DPF becomes active, supporting a PCDD/F formation, when operated with biofuel containing impurities of potassium. Alkali metals are inherent constituents of biofuels. According to the current European Union (EU) legislation, levels of 5 μg/g are accepted. We conclude that risks for a secondary PCDD/F formation in iron-catalyzed DPFs increase when combusting potassium-containing biofuels

    PCDD/F Formation in an Iron/Potassium-Catalyzed Diesel Particle Filter

    No full text
    Catalytic diesel particle filters (DPFs) have evolved to a powerful environmental technology. Several metal-based, fuel soluble catalysts, so-called fuel-borne catalysts (FBCs), were developed to catalyze soot combustion and support filter regeneration. Mainly iron- and cerium-based FBCs have been commercialized for passenger cars and heavy-duty vehicle applications. We investigated a new iron/potassium-based FBC used in combination with an uncoated silicon carbide filter and report effects on emissions of polychlorinated dibenzodioxins/furans (PCDD/Fs). The PCDD/F formation potential was assessed under best and worst case conditions, as required for filter approval under the VERT protocol. TEQ-weighted PCDD/F emissions remained low when using the Fe/K catalyst (37/7.5 μg/g) with the filter and commercial, low-sulfur fuel. The addition of chlorine (10 μg/g) immediately led to an intense PCDD/F formation in the Fe/K-DPF. TEQ-based emissions increased 51-fold from engine-out levels of 95 to 4800 pg I-TEQ/L after the DPF. Emissions of 2,3,7,8-TCDD, the most toxic congener (TEF = 1.0), increased 320-fold, those of 2,3,7,8-TCDF (TEF = 0.1) even 540-fold. Remarkable pattern changes were noticed, indicating a preferential formation of tetrachlorinated dibenzofurans. It has been shown that potassium acts as a structural promoter inducing the formation of magnetite (Fe<sub>3</sub>O<sub>4</sub>) rather than hematite (Fe<sub>2</sub>O<sub>3</sub>). This may alter the catalytic properties of iron. But the chemical nature of this new catalyst is yet unknown, and we are far from an established mechanism for this new pathway to PCDD/Fs. In conclusion, the iron/potassium-catalyzed DPF has a high PCDD/F formation potential, similar to the ones of copper-catalyzed filters, the latter are prohibited by Swiss legislation
    corecore