12,433 research outputs found

    Tagging time in prolog : the temporality effect project

    Get PDF
    This article combines a brief introduction into a particular philosophical theory of "time" with a demonstration of how this theory has been implemented in a Literary Studies oriented Humanities Computing project. The aim of the project was to create a model of text-based time cognition and design customized markup and text analysis tools that help to understand ‘‘how time works’’: more precisely, how narratively organised and communicated information motivates readers to generate the mental image of a chronologically organized world. The approach presented is based on the unitary model of time originally proposed by McTaggart, who distinguished between two perspectives onto time, the so-called A- and B-series. The first step towards a functional Humanities Computing implementation of this theoretical approach was the development of TempusMarker—a software tool providing automatic and semi-automatic markup routines for the tagging of temporal expressions in natural language texts. In the second step we discuss the principals underlying TempusParser—an analytical tool that can reconstruct temporal order in events by way of an algorithm-driven process of analysis and recombination of textual segments during which the "time stamp" of each segment as indicated by the temporal tags is interpreted

    Sets with more differences than sums

    Full text link
    We show that a random set of integers with density 0 has almost always more differences than sums. This proves a conjecture by Martin and O'Bryant

    The irrationality of some number theoretical series

    Full text link
    We prove the irrationality of some factorial series. To do so we combine methods from elementary and analytic number theory with methods from the theory of uniform distribution

    Continuous Multiclass Labeling Approaches and Algorithms

    Get PDF
    We study convex relaxations of the image labeling problem on a continuous domain with regularizers based on metric interaction potentials. The generic framework ensures existence of minimizers and covers a wide range of relaxations of the originally combinatorial problem. We focus on two specific relaxations that differ in flexibility and simplicity -- one can be used to tightly relax any metric interaction potential, while the other one only covers Euclidean metrics but requires less computational effort. For solving the nonsmooth discretized problem, we propose a globally convergent Douglas-Rachford scheme, and show that a sequence of dual iterates can be recovered in order to provide a posteriori optimality bounds. In a quantitative comparison to two other first-order methods, the approach shows competitive performance on synthetical and real-world images. By combining the method with an improved binarization technique for nonstandard potentials, we were able to routinely recover discrete solutions within 1%--5% of the global optimum for the combinatorial image labeling problem
    • …
    corecore