16 research outputs found

    Indicators of induced subacute ruminal acidosis (SARA) in Danish Holstein cows

    Get PDF
    BACKGROUND: The prevalence of subacute ruminal acidosis (SARA) in dairy cows is high with large impact on economy and welfare. Its current field diagnosis is based on point ruminal pH measurements by oral probe or rumenocentesis. These techniques are invasive and inaccurate, and better markers for the diagnosis of SARA are needed. The goal of this study was to evaluate clinical signs of SARA and to investigate the use of blood, faecal and urinary parameters as indicators of SARA. Six lactating, rumen cannulated, Danish Holstein cows were used in a cross-over study with three periods. The first and second periods included two cows on control diet and two cows on nutritional SARA challenge. The third period only included two cows on SARA challenge. Control diet was a conventional total mixed ration [45.5% dry matter (DM), 17.8% crude protein, 43.8% neutral detergent fibre, and 22.5% acid detergent fibre (DM basis)]. SARA challenge was conducted by substituting control diet with grain pellets (50% wheat/barley) over 3 days to reach 40% grain in the diet. Ruminal pH was measured continuously. Blood samples were collected once daily at 7 h after feeding. Samples of faeces and urine were collected at feeding, and at 7 and 12 h after feeding. Blood samples were analysed for pCO2, pO2, pH, electrolytes, lactate, glucose, packed cell volume (PCV), and total plasma protein concentration. Milk composition, ruminal VFA, and pH of faeces and urine were measured. RESULTS: SARA was associated with decreased (P < 0.05) minimum ruminal, faecal and urinary pH. Daily times and areas of ruminal pH below 5.8, and 5.6 were increased to levels representative for SARA. Significant differences were detected in milk composition and ruminal VFAs. Blood calcium concentration was decreased (P < 0.05), and pCO(2) tended to be increased (P = 0.10). Significant differences were not detected in other parameters. CONCLUSIONS: SARA challenge was associated with changes in faecal and urinary pH, blood calcium concentration and pCO(2). These may be helpful as indicators of SARA. However changes were small, and diurnal variations were present. None of these parameters are able to stand alone as indicators of SARA

    Rumen Microbiome Composition Determined Using Two Nutritional Models of Subacute Ruminal Acidosisâ–ż

    No full text
    Subacute ruminal acidosis (SARA) is a metabolic disease in dairy cattle that occurs during early and mid-lactation and has traditionally been characterized by low rumen pH, but lactic acid does not accumulate as in acute lactic acid acidosis. It is hypothesized that factors such as increased gut permeability, bacterial lipopolysaccharides, and inflammatory responses may have a role in the etiology of SARA. However, little is known about the nature of the rumen microbiome during SARA. In this study, we analyzed the microbiome of 64 rumen samples taken from eight lactating Holstein dairy cattle using terminal restriction fragment length polymorphisms (TRFLP) of 16S rRNA genes and real-time PCR. We used rumen samples from two published experiments in which SARA had been induced with either grain or alfalfa pellets. The results of TRFLP analysis indicated that the most predominant shift during SARA was a decline in gram-negative Bacteroidetes organisms. However, the proportion of Bacteroidetes organisms was greater in alfalfa pellet-induced SARA than in mild or severe grain-induced SARA (35.4% versus 26.0% and 16.6%, respectively). This shift was also evident from the real-time PCR data for Prevotella albensis, Prevotella brevis, and Prevotella ruminicola, which are members of the Bacteroidetes. The real-time PCR data also indicated that severe grain-induced SARA was dominated by Streptococcus bovis and Escherichia coli, whereas mild grain-induced SARA was dominated by Megasphaera elsdenii and alfalfa pellet-induced SARA was dominated by P. albensis. Using discriminant analysis, the severity of SARA and degree of inflammation were highly correlated with the abundance of E. coli and not with lipopolysaccharide in the rumen. We thus suspect that E. coli may be a contributing factor in disease onset

    Composition and co-occurrence patterns of the microbiota of different niches of the bovine mammary gland: potential associations with mastitis susceptibility, udder inflammation, and teat-end hyperkeratosis

    No full text
    Abstract Background Within complex microbial ecosystems, microbe-microbe interrelationships play crucial roles in determining functional properties such as metabolic potential, stability and colonization resistance. In dairy cows, microbes inhabiting different ecological niches of the udder may have the potential to interact with mastitis pathogens and therefore modulate susceptibility to intramammary infection. In the present study, we investigated the co-occurrence patterns of bacterial communities within and between different niches of the bovine mammary gland (teat canal vs. milk) in order to identify key bacterial taxa and evaluate their associations with udder health parameters and mastitis susceptibility. Results Overall, teat canal microbiota was more diverse, phylogenetically less dispersed, and compositionally distinct from milk microbiota. This, coupled with identification of a large number of bacterial taxa that were exclusive to the teat canal microbiota suggested that the intramammary ecosystem, represented by the milk microbiota, acts as a selective medium that disfavors the growth of certain environmental bacterial lineages. We further observed that the diversity of milk microbiota was negatively correlated with udder inflammation. By performing correlation network analysis, we identified two groups of phylogenetically distinct hub species that were either positively (unclassified Bacteroidaceae and Phascolarctobacterium) or negatively (Sphingobacterium) correlated with biodiversity metrics of the mammary gland (MG). The latter group of bacteria also showed positive associations with the future incidence of clinical mastitis. Conclusions Our results provide novel insights into the composition and structure of bacterial communities inhabiting different niches of the bovine MG. In particular, we identified hub species and candidate foundation taxa that were associated with the inflammatory status of the MG and/or future incidences of clinical mastitis. Further in vitro and in vivo interrogations of MG microbiota can shed light on different mechanisms by which commensal microbiota interact with mastitis pathogens and modulate udder homeostasis

    Association of bovine major histocompatibility complex (BoLA) gene polymorphism with colostrum and milk microbiota of dairy cows during the first week of lactation

    No full text
    Abstract Background The interplay between host genotype and commensal microbiota at different body sites can have important implications for health and disease. In dairy cows, polymorphism of bovine major histocompatibility complex (BoLA) gene has been associated with susceptibility to several infectious diseases, most importantly mastitis. However, mechanisms underlying this association are yet poorly understood. In the present study, we sought to explore the association of BoLA gene polymorphism with the dynamics of mammary microbiota during the first week of lactation. Results Colostrum and milk samples were collected from multiparous Holstein dairy cows at the day of calving and days 1 and 6 after calving. Microbiota profiling was performed using high-throughput sequencing of the V1-V2 regions of the bacterial 16S rRNA genes and ITS2 region of the fungal ribosomal DNA. Polymorphism of BoLA genes was determined using PCR-RFLP of exon 2 of the BoLA-DRB3. In general, transition from colostrum to milk resulted in increased species richness and diversity of both bacterial and fungal communities. The most dominant members of intramammary microbiota included Staphylococcus, Ruminococcaceae, and Clostridiales within the bacterial community and Alternaria, Aspergillus, Candida, and Cryptococcus within the fungal community. Comparing the composition of intramammary microbiota between identified BoLA-DRB3.2 variants (n = 2) revealed distinct clustering pattern on day 0, whereas this effect was not significant on the microbiota of milk samples collected on subsequent days. On day 0, proportions of several non-aureus Staphylococcus (NAS) OTUs, including those aligned to Staphylococcus equorum, Staphylococcus gallinarum, Staphylococcus sciuri, and Staphylococcus haemolyticus, were enriched within the microbiota of one of the BoLA-DRB3.2 variants, whereas lactic acid bacteria (LAB) including Lactobacillus and Enterococcus were enriched within the colostrum microbiota of the other variant. Conclusion Our results suggest a potential role for BoLA-gene polymorphism in modulating the composition of colostrum microbiota in dairy cows. Determining whether BoLA-mediated shifts in the composition of colostrum microbiota are regulated directly by immune system or indirectly by microbiota-derived colonization resistant can have important implications for future development of preventive/therapeutic strategies for controlling mastitis
    corecore