10 research outputs found

    Estimation of bioactive potential of culturable bacterial endophytes from Coleus

    Get PDF
    331-342Endophytic microflora is source of several bioactive compounds. Endophytes isolated from Coleus species are yet to be fully explored for their bioactive potential. In this study, bacterial endophytes were isolated from three different species of Coleus. Isolated endophytes were characterized by using Gram staining and by sequencing 16S rRNA region. Further, solvents with different polarities were used to prepare extracts which were used for assessment of different bio-activities including in vitro cytotoxicity, anti-microbial and anti-oxidant activities. Also, the pure endophytic bacterial cultures were evaluated for their antiphytopathogen potential as well as indole-3-acetic acid (IAA) and protease production. Advanced studies on the endophytes with promising activities may lead to the isolation of novel natural products for drugs as well as in industrial and agricultural applications

    Isolation, identification and bioactive potential of bacterial endophytes from Coleus

    Get PDF
    Coleus (Lamiaceae) is a large and widespread genus comprising of species with diverse ethnobotanical uses. In the present study, bacterial endophytes were isolated from Coleus forskohlii and Coleus aromaticus. Endophytes are the microorganisms which reside within the plants without showing any harmful effect on its host. Diverse types of endophytes live symbiotically within almost all plants and in turn help the plant in a number of ways such as imparting resistance against biotic and abiotic stresses, producing compounds involved in attraction of pollinators, inducing the plant defense mechanisms, etc. The bacterial endophytes isolated in this study, were characterized by microscopic examination (using gram staining) and molecularly identified by sequencing the 16S rRNA. Extracts were prepared from endophytic biomass using solvents of different polarities (methanol, ethyl acetate and butanol) and were screened for their bioactive potential (in vitro cytotoxicity anti-microbial, and anti-oxidant activity). Scale-up of endophytes showing promising results is under process, which will help in isolation of pure compounds

    Changing Rhizosphere Microbial Community and Metabolites with Developmental Stages of <i>Coleus barbatus</i>

    No full text
    Coleus barbatus is a medicinal herb belonging to Lamiaceae. It is the only living organism known to produce forskolin, which is a labdane diterpene and is reported to activate adenylate cyclase. Microbes associated with plants play an important role in maintaining plant health. Recently, the targeted application of beneficial plant-associated microbes and their combinations in abiotic and biotic stress tolerance has gained momentum. In this work, we carried out the rhizosphere metagenome sequencing of C. barbatus at different developmental stages to understand how rhizosphere microflora are affected by and affect the metabolite content in plants. We found that the Kaistobacter genus was abundantly present in the rhizosphere of C. barbatus and its accumulation pattern appears to correlate with the quantities of forskolin in the roots at different developmental stages. Members of the Phoma genus, known for several pathogenic species, were in lower numbers in the C. barbatus rhizosphere in comparison with C. blumei. To our knowledge, this is the first metagenomic study of the rhizospheric microbiome of C. barbatus, which may help to explore and exploit the culturable and non-culturable microbial diversity present in the rhizosphere

    Estimation of bioactive potential of culturable bacterial endophytes from Coleus

    Get PDF
    Endophytic microflora is source of several bioactive compounds. Endophytes isolated from Coleus species are yet to be fully explored for their bioactive potential. In this study, bacterial endophytes were isolated from three different species of Coleus. Isolated endophytes were characterized by using Gram staining and by sequencing 16S rRNA region. Further, solvents with different polarities were used to prepare extracts which were used for assessment of different bio-activities including in vitro cytotoxicity, anti-microbial and anti-oxidant activities. Also, the pure endophytic bacterial cultures were evaluated for their antiphytopathogen potential as well as indole-3-acetic acid (IAA) and protease production. Advanced studies on the endophytes with promising activities may lead to the isolation of novel natural products for drugs as well as in industrial and agricultural applications

    Overlapping targets exist between the Par-4 and miR-200c axis which regulate EMT and proliferation of pancreatic cancer cells

    Get PDF
    The last decade has witnessed a substantial expansion in the field of microRNA (miRNA) biology, providing crucial insights into the role of miRNAs in disease pathology, predominantly in cancer progression and its metastatic spread. The discovery of tumor-suppressing miRNAs represents a potential approach for developing novel therapeutics. In this context, through miRNA microarray analysis, we examined the consequences of Prostate apoptosis response-4 (Par-4), a well-established tumor-suppressor, stimulation on expression of different miRNAs in Panc-1 cells. The results strikingly indicated elevated miR-200c levels in these cells upon Par-4 overexpression. Intriguingly, the Reverse Phase Protein Array (RPPA) analysis revealed differentially expressed proteins (DEPs), which overlap between miR200c- and Par-4-transfected cells, highlighting the cross-talks between these pathways. Notably, Phospho-p44/42 MAPK; Bim; Bcl-xL; Rb Phospho-Ser807, Ser811; Akt Phospho-Ser473; Smad1/5 Phospho-Ser463/Ser465 and Zyxin scored the most significant DEPs among the two data sets. Furthermore, the GFP-Par-4-transfected cells depicted an impeded expression of critical mesenchymal markers viz. TGF-β1, TGF-β2, ZEB-1, and Twist-1, concomitant with augmented miR-200c and E-cadherin levels. Strikingly, while Par-4 overexpression halted ZEB-1 at the transcriptional level; contrarily, silencing of endogenous Par-4 by siRNA robustly augmented the Epithelial-mesenchymal transition (EMT) markers, along with declining miR-200c levels. The pharmacological Par-4-inducer, NGD16, triggered Par-4 expression which corresponded with increased miR-200c resulting in the ZEB-1 downregulation. Noteworthily, tumor samples obtained from the syngenic mouse pancreatic cancer model revealed elevated miR-200c levels in the NGD16-treated mice that positively correlated with the Par-4 and E-cadherin levels in vivo; while a negative correlation was evident with ZEB-1 and Vimentin

    Seed Priming with Jasmonic Acid Counteracts Root Knot Nematode Infection in Tomato by Modulating the Activity and Expression of Antioxidative Enzymes

    No full text
    The environmental stress, biotic as well as abiotic, is the main cause of decreased growth and crop production. One of the stress-causing agents in plants are parasitic nematodes responsible for crop loss. Jasmonic acid (JA) is recognized as one of signaling molecules in defense-related responses in plants, however, its role under nematode infestation is unclear. Therefore, the present study was planned to traverse the role of JA in boosting the activities of antioxidative enzymes in tomato seedlings during nematode inoculation. Application of JA declined oxidative damage by decreasing O2&bull;&minus; content, nuclear and membrane damage under nematode stress. JA treatment elevated the activities of SOD, POD, CAT, APOX, DHAR, GPOX, GR, and PPO in nematode-infested seedlings. Seed soaking treatment of JA upregulated the expression of SOD, POD, CAT, and GPOX under nematode stress. Various amino acids were found in tomato seedlings and higher content of aspartic acid, histidine, asparagine, glutamine, glutamic acid, glycine, threonine, lysine, arginine, B-alanine, GABA, phenylalanine, proline, and ornithine was observed in seeds soaked with JA (100 nM) treatment during nematode inoculation. The results suggest an indispensable role of JA in basal defense response in plants during nematode stress
    corecore