104 research outputs found
Exchange bias and training effects in antiferromagnetically coupled La0.7Sr0.3MnO3 / SrRuO3 superlattices
Exchange bias (EB) and the training effects (TE) in an antiferromagnetically
coupled La0.7Sr0.3MnO3 / SrRuO3 superlattices were studied in the temperature
range 1.8 - 150 K. Strong antiferromagnetic (AFM) interlayer coupling is
evidenced from AC - susceptibility measurements. Below 100 K, vertical
magnetization shifts are present due to the two remanent states corresponding
to the two ferromagnetic (FM) layers at FM and AFM coupling condition. After
field cooling (FC), significant decrease in the exchange bias field (HEB) is
observed when cycling the system through several consecutive hysteresis loops.
Quantitative analysis for the variation of HEB vs. number of field cycles (n)
indicates an excellent agreement between the theory, based on triggered
relaxation phenomena, and our experimental observations. Nevertheless, the
crucial fitting parameter K indicates smooth training effect upon repeated
field cycling, in accordance with our observation.Comment: Accepted Europhysics Letter
Room temperature soft ferromagnetism in the nanocrystalline form of YCo2 - a well-known bulk Pauli paramagnet
The Laves phase compound, YCo2, is a well-known exchange-enahnced Pauli
paramagnet. We report here that, in the nanocrystalline form, this compound
interestingly is an itinerant ferromagnet at room temperature with a low
coercive-field. The magnitude of the saturation moment (about 1 Bohr-magneton
per formula unit) is large enough to infer that the ferromagnetism is not a
surface phenomenon in these nanocrystallites. Since these ferromagnetic
nanocrystallines are easy to synthesize with a stable form in air, one can
explore applications, particularly where hysteresis is a disadvantage
Ferromagnetism in graphene nanoribbons: split versus oxidative unzipped ribbons
Two types of graphene nanoribbons: (a) potassium-split graphene nanoribbons
(GNRs), and (b) oxidative unzipped and chemically converted graphene
nanoribbons (CCGNRs) were investigated for their magnetic properties using the
combination of static magnetization and electron spin resonance measurements.
The two types of ribbons possess remarkably different magnetic properties.
While the low temperature ferromagnet-like feature is observed in both types of
ribbons, such room temperature feature persists only in potassium-split
ribbons. The GNRs show negative exchange bias, but the CCGNRs exhibit a
'positive exchange bias'. Electron spin resonance measurements infer that the
carbon related defects may responsible for the observed magnetic behaviour in
both types of ribbons. Furthermore, proton hyperfine coupling strength has been
obtained from hyperfine sublevel correlation experiments performed on the GNRs.
Electron spin resonance provides no indications for the presence of potassium
(cluster) related signals, emphasizing the intrinsic magnetic nature of the
ribbons. Our combined experimental results may infer the coexistence of
ferromagnetic clusters with anti-ferromagnetic regions leading to disordered
magnetic phase. We discuss the origin of the observed contrast in the magnetic
behaviours of these two types of ribbons
Projected changes of rainfall seasonality and dry spells in a high greenhouse gas emissions scenario
In this diagnostic study we analyze changes of rainfall seasonality and dry spells by the end of the twenty-first century under the most extreme IPCC5 emission scenario (RCP8.5) as projected by twenty-four coupled climate models contributing to Coupled Model Intercomparison Project 5 (CMIP5). We use estimates of the centroid of the monthly rainfall distribution as an index of the rainfall timing and a threshold-independent, information theory-based quantity such as relative entropy (RE) to quantify the concentration of annual rainfall and the number of dry months and to build a monsoon dimensionless seasonality index (DSI). The RE is projected to increase, with high inter-model agreement over Mediterranean-type regions---southern Europe, northern Africa and southern Australia---and areas of South and Central America, implying an increase in the number of dry days up to 1Ă‚ month by the end of the twenty-first century. Positive RE changes are also projected over the monsoon regions of southern Africa and North America, South America. These trends are consistent with a shortening of the wet season associated with a more prolonged pre-monsoonal dry period. The extent of the global monsoon region, characterized by large DSI, is projected to remain substantially unaltered. Centroid analysis shows that most of CMIP5 projections suggest that the monsoonal annual rainfall distribution is expected to change from early to late in the course of the hydrological year by the end of the twenty-first century and particularly after year 2050. This trend is particularly evident over northern Africa, southern Africa and western Mexico, where more than 90% of the models project a delay of the rainfall centroid from a few days up to 2Ă‚ weeks. Over the remaining monsoonal regions, there is little inter-model agreement in terms of centroid changes
Genome-Wide and Phase-Specific DNA-Binding Rhythms of BMAL1 Control Circadian Output Functions in Mouse Liver
Temporal mapping during a circadian day of binding sites for the BMAL1 transcription factor in mouse liver reveals genome-wide daily rhythms in DNA binding and uncovers output functions that are controlled by the circadian oscillator
- …