299 research outputs found

    The Tightness of the Kesten-Stigum Reconstruction Bound of Symmetric Model with Multiple Mutations

    Full text link
    It is well known that reconstruction problems, as the interdisciplinary subject, have been studied in numerous contexts including statistical physics, information theory and computational biology, to name a few. We consider a 2q2q-state symmetric model, with two categories of qq states in each category, and 3 transition probabilities: the probability to remain in the same state, the probability to change states but remain in the same category, and the probability to change categories. We construct a nonlinear second order dynamical system based on this model and show that the Kesten-Stigum reconstruction bound is not tight when q4q \geq 4.Comment: Accepted, to appear Journal of Statistical Physic

    Resistive switching in ultra-thin La0.7Sr0.3MnO3 / SrRuO3 superlattices

    Full text link
    Superlattices may play an important role in next generation electronic and spintronic devices if the key-challenge of the reading and writing data can be solved. This challenge emerges from the coupling of low dimensional individual layers with macroscopic world. Here we report the study of the resistive switching characteristics of a of hybrid structure made out of a superlattice with ultrathin layers of two ferromagnetic metallic oxides, La0.7Sr0.3MnO3 (LSMO) and SrRuO3 (SRO). Bipolar resistive switching memory effects are measured on these LSMO/SRO superlattices, and the observed switching is explainable by ohmic and space charge-limited conduction laws. It is evident from the endurance characteristics that the on/off memory window of the cell is greater than 14, which indicates that this cell can reliably distinguish the stored information between high and low resistance states. The findings may pave a way to the construction of devices based on nonvolatile resistive memory effects

    Magnetocaloric effect and nature of magnetic transition in nanoscale Pr0.5Ca0.5MnO3

    Full text link
    Systematic measurements pertinent to the magnetocaloric effect and nature of magnetic transition around the transition temperature are performed in the 10 nm Pr0.5Ca0.5MnO3 nanoparticles (PCMO10) . Maxwell relation is employed to estimate the change in magnetic entropy. At Curie temperature TC, 83.5 K, the change in magnetic entropy discloses a typical variation with a value 0.57 J/kg K, and is found to be magnetic field dependent. From the area under the curve Delta S vs T, the refrigeration capacity is calculated at TC, 83.5 K and it is found to be 7.01 J/kg. Arrott plots infer that due to the competition between the ferromagnetic and anti ferromagnetic interactions, the magnetic phase transition in PCMO10 is broadly spread over both in temperature as well as in magnetic field coordinates. Upon tuning the particle size, size distribution, morphology, and relative fraction of magnetic phases, it may be possible to enhance the magnetocalorific effect further in PCMO10.Comment: Accepted (Journal of Applied Physics) (In press

    Exchange bias and training effects in antiferromagnetically coupled La0.7Sr0.3MnO3 / SrRuO3 superlattices

    Full text link
    Exchange bias (EB) and the training effects (TE) in an antiferromagnetically coupled La0.7Sr0.3MnO3 / SrRuO3 superlattices were studied in the temperature range 1.8 - 150 K. Strong antiferromagnetic (AFM) interlayer coupling is evidenced from AC - susceptibility measurements. Below 100 K, vertical magnetization shifts are present due to the two remanent states corresponding to the two ferromagnetic (FM) layers at FM and AFM coupling condition. After field cooling (FC), significant decrease in the exchange bias field (HEB) is observed when cycling the system through several consecutive hysteresis loops. Quantitative analysis for the variation of HEB vs. number of field cycles (n) indicates an excellent agreement between the theory, based on triggered relaxation phenomena, and our experimental observations. Nevertheless, the crucial fitting parameter K indicates smooth training effect upon repeated field cycling, in accordance with our observation.Comment: Accepted Europhysics Letter

    Martensite-like transition and spin-glass behavior in nanocrystalline Pr0.5Ca0.5MnO3

    Full text link
    We report on isothermal pulsed (20 ms) field magnetization, temperature dependent AC - susceptibility, and the static low magnetic field measurements carried out on 10 nm sized Pr0.5Ca0.5MnO3 nanoparticles (PCMO10). The saturation field for the magnetization of PCMO10 (~ 250 kOe) is found to be reduced in comparison with that of bulk PCMO (~300 kOe). With increasing temperature, the critical magnetic field required to 'melt' the residual charge-ordered phase decays exponentially while the field transition range broadens, which is indicative of a Martensite-like transition. The AC - susceptibility data indicate the presence of a frequency-dependent freezing temperature, satisfying the conventional Vogel-Fulcher and power laws, pointing to the existence of a spin-glass-like disordered magnetic phase. The present results lead to a better understanding of manganite physics and might prove helpful for practical applications
    corecore