50 research outputs found

    SnO2-MOF-Fabry-Perot optical sensor for relative humidity measurements

    Get PDF
    In this paper, a new optical fiber sensor for relative humidity measurements is presented and characterized. The sensor is based on a SnO2 sputtering deposition on a microstructured optical fiber (MOF) low-finesse Fabry-Pérot (FP) sensing head. The feasibility of the device as a breathing sensor is also experimentally demonstrated. The interrogation of the sensing head is carried out by monitoring the Fast Fourier Transform phase variations of the FP interference frequency. This method substitutes the necessity of tracking the optical spectrum peaks or valleys, which can be a handicap when noise or multiple contributions are present: therefore, it is low-sensitive to noise and to artifacts signal amplitude. The sensor shows a linear behavior in a wide relative humidity range (20%–90% relative humidity) in which the sensitivity is 0.14 rad/%; the maximum observed instability is 0.007 rad, whereas the highest hysteresis is 5% RH. The cross correlation with temperature is also considered and a method to lower its influence is proposed. For human breathing measurement, the registered rising and recovery times are 370 ms and 380 ms respectively.The authors are grateful to A. Ortigosa, D. Erro, Dr. M. Bravo and Dr. R.A. Perez-Herrera. We also thank the Spanish Government projects TEC2013-47264-C2-2-R, TEC 2016-76021-C2-1-R, TEC2016-78047-R, TEC2016-79367-C2-2-R, Innocampus and the Cost Action MP 1401, as well as to the AEI/FEDER Funds

    Real time measuring system of multiple chemical parameters using microstructured optical fibers based sensors

    Get PDF
    In this paper, a multiplexing system for simultaneous interrogation of optical fiber sensors which measure different parameters is presented and validated. The whole system has been tested with 6 different sensing heads with different purposes: one temperature sensing head, two relative humidity sensors and three VOCs leak sensors; all of them based on microstructured optical fibers. The interrogation system uses the FFT technique to isolate each sensor's interference, enabling their simultaneous interrogation. The system interrogates all the sensors at frequencies up to 1 KHz, showing a good performance of each measurement without crosstalk between sensors. The developed system is independent of the sensors' purpose or of the multiplexing topology.This work was supported in part by the Spanish Comisión Interministerial de Ciencia y Tecnología within projects under Grant TEC2016-76021-C2-1-R, Grant TEC2016-78047-R, and Grant TEC2016-79367-C2-2-R, in part by the Cost Action MP1401, and in part by the FEDER funds from the European Union

    Title enhancement of the sensitivity of a volatile organic compounds MOF-sensor by means of its structure

    Get PDF
    Trabajo presentado en la Eurosensors 2017 Conference. París, 3–6 de septiembre de 2017.In this paper, we experimentally compare several core structures of Microstructured Optical Fibers (MOFs) for low-finesse Fabry-Pérot (FP) sensors. These sensors are designed for Volatile Organic Compounds (VOCs) measurements. We deposit Indium Tin Oxide (ITO) thin films by sputtering on the MOFs and different optical phase responses of the FP were measured for saturated atmospheres of ethanol. The sensitivity of the developed sensors is demonstrated to depend on the geometry and the dimensions of the MOF-cores. The sensors show recovery times under 100 s and the baselines are fully recovered after exposure to VOC.This work was supported by the research grant TEC2016-79367-C2-2-R and TEC 2016-76021-C2-1-R (AEI/FEDER, UE) as well as Public University of Navarre program PhD grants
    corecore