14 research outputs found

    Generalized Diffusion MRI Denoising and Super-Resolution using Swin Transformers

    Full text link
    Diffusion MRI is a non-invasive, in-vivo medical imaging method able to map tissue microstructure and structural connectivity of the human brain, as well as detect changes, such as brain development and injury, not visible by other clinical neuroimaging techniques. However, acquiring high signal-to-noise ratio (SNR) datasets with high angular and spatial sampling requires prohibitively long scan times, limiting usage in many important clinical settings, especially children, the elderly, and emergency patients with acute neurological disorders who might not be able to cooperate with the MRI scan without conscious sedation or general anesthesia. Here, we propose to use a Swin UNEt TRansformers (Swin UNETR) model, trained on augmented Human Connectome Project (HCP) data and conditioned on registered T1 scans, to perform generalized denoising and super-resolution of diffusion MRI invariant to acquisition parameters, patient populations, scanners, and sites. We qualitatively demonstrate super-resolution with artificially downsampled HCP data in normal adult volunteers. Our experiments on two other unrelated datasets, one of children with neurodevelopmental disorders and one of traumatic brain injury patients, show that our method demonstrates superior denoising despite wide data distribution shifts. Further improvement can be achieved via finetuning with just one additional subject. We apply our model to diffusion tensor (2nd order spherical harmonic) and higher-order spherical harmonic coefficient estimation and show results superior to current state-of-the-art methods. Our method can be used out-of-the-box or minimally finetuned to denoise and super-resolve a wide variety of diffusion MRI datasets. The code and model are publicly available at https://github.com/ucsfncl/dmri-swin

    Hemispheric lateralization of white matter microstructure in children and its potential role in sensory processing dysfunction

    Get PDF
    Diffusion tensor imaging (DTI) studies have demonstrated white matter microstructural differences between the left and right hemispheres of the brain. However, the basis of these hemispheric asymmetries is not yet understood in terms of the biophysical properties of white matter microstructure, especially in children. There are reports of altered hemispheric white matter lateralization in ASD; however, this has not been studied in other related neurodevelopmental disorders such as sensory processing disorder (SPD). Firstly, we postulate that biophysical compartment modeling of diffusion MRI (dMRI), such as Neurite Orientation Dispersion and Density Imaging (NODDI), can elucidate the hemispheric microstructural asymmetries observed from DTI in children with neurodevelopmental concerns. Secondly, we hypothesize that sensory over-responsivity (SOR), a common type of SPD, will show altered hemispheric lateralization relative to children without SOR. Eighty-seven children (29 females, 58 males), ages 8–12 years, presenting at a community-based neurodevelopmental clinic were enrolled, 48 with SOR and 39 without. Participants were evaluated using the Sensory Processing 3 Dimensions (SP3D). Whole brain 3 T multi-shell multiband dMRI (b = 0, 1,000, 2,500 s/mm2) was performed. Tract Based Spatial Statistics were used to extract DTI and NODDI metrics from 20 bilateral tracts of the Johns Hopkins University White-Matter Tractography Atlas and the lateralization Index (LI) was calculated for each left–right tract pair. With DTI metrics, 12 of 20 tracts were left lateralized for fractional anisotropy and 17/20 tracts were right lateralized for axial diffusivity. These hemispheric asymmetries could be explained by NODDI metrics, including neurite density index (18/20 tracts left lateralized), orientation dispersion index (15/20 tracts left lateralized) and free water fraction (16/20 tracts lateralized). Children with SOR served as a test case of the utility of studying LI in neurodevelopmental disorders. Our data demonstrated increased lateralization in several tracts for both DTI and NODDI metrics in children with SOR, which were distinct for males versus females, when compared to children without SOR. Biophysical properties from NODDI can explain the hemispheric lateralization of white matter microstructure in children. As a patient-specific ratio, the lateralization index can eliminate scanner-related and inter-individual sources of variability and thus potentially serve as a clinically useful imaging biomarker for neurodevelopmental disorders

    Preliminary report on the effects of a low dose of LSD on resting state amygdalar functional connectivity

    Full text link
    The practice of “microdosing”, or the use of repeated, very low doses of LSD to improve mood or cognition, has received considerable public attention, but empirical studies are lacking. Controlled studies are needed to investigate both the therapeutic potential and the neurobiological underpinnings of this pharmacologic treatment. Methods. The present study was designed to examine the effects of a single low dose of LSD (13 micrograms) vs placebo on resting-state functional connectivity and cerebral blood flow in healthy young adults. Twenty men and women, aged 18-35, participated in two fMRI scanning sessions in which they received placebo or LSD under double-blind conditions. During each session, the participants completed drug effect and mood questionnaires, and physiological measures were recorded. During expected peak drug effect, they underwent resting-state BOLD and ASL scans. Cerebral blood flow as well as amygdala and thalamic connectivity were analyzed. Results. LSD increased amygdala seed-based connectivity with the right angular gyrus, right middle frontal gyrus, and the cerebellum, and decreased amygdala connectivity with the left and right postcentral gyrus and the superior temporal gyrus. This low dose of LSD had weak and variable effects on mood, but its effects on positive mood were positively correlated with the increase in amygdala – middle frontal gyrus connectivity strength. Conclusions. These preliminary findings show that a very low dose of LSD, which produces negligible subjective changes, alters brain connectivity in limbic circuits. Additional studies, especially with repeated dosing, will reveal whether these neural changes are related to the drug’s purported antidepressant effect. NCT0379035

    Brief Report: Characterization of Sensory Over-Responsivity in a Broad Neurodevelopmental Concern Cohort Using the Sensory Processing Three Dimensions (SP3D) Assessment

    No full text
    Sensory Over-Responsivity (SOR) is an increasingly recognized challenge among children with neurodevelopmental concerns (NDC). To investigate, we characterized the incidence of auditory and tactile over-responsivity (AOR, TOR) among 82 children with NDC. We found that 70% of caregivers reported concern for their child's sensory reactions. Direct assessment further revealed that 54% of the NDC population expressed AOR, TOR, or both - which persisted regardless of autism spectrum disorder (ASD) diagnosis. These findings support the high prevalence of SOR as well as its lack of specificity to ASD. Additionally, AOR is revealed to be over twice as prevalent as TOR. These conclusions present several avenues for further exploration, including deeper analysis of the neural mechanisms and genetic contributors to sensory processing challenges
    corecore