13 research outputs found

    DNA Damage Responses in Human Induced Pluripotent Stem Cells and Embryonic Stem Cells

    Get PDF
    BACKGROUND: Induced pluripotent stem (iPS) cells have the capability to undergo self-renewal and differentiation into all somatic cell types. Since they can be produced through somatic cell reprogramming, which uses a defined set of transcription factors, iPS cells represent important sources of patient-specific cells for clinical applications. However, before these cells can be used in therapeutic designs, it is essential to understand their genetic stability.\ud \ud METHODOLOGY/PRINCIPAL FINDINGS: Here, we describe DNA damage responses in human iPS cells. We observe hypersensitivity to DNA damaging agents resulting in rapid induction of apoptosis after γ-irradiation. Expression of pluripotency factors does not appear to be diminished after irradiation in iPS cells. Following irradiation, iPS cells activate checkpoint signaling, evidenced by phosphorylation of ATM, NBS1, CHEK2, and TP53, localization of ATM to the double strand breaks (DSB), and localization of TP53 to the nucleus of NANOG-positive cells. We demonstrate that iPS cells temporary arrest cell cycle progression in the G(2) phase of the cell cycle, displaying a lack of the G(1)/S cell cycle arrest similar to human embryonic stem (ES) cells. Furthermore, both cell types remove DSB within six hours of γ-irradiation, form RAD51 foci and exhibit sister chromatid exchanges suggesting homologous recombination repair. Finally, we report elevated expression of genes involved in DNA damage signaling, checkpoint function, and repair of various types of DNA lesions in ES and iPS cells relative to their differentiated counterparts.\ud \ud CONCLUSIONS/SIGNIFICANCE: High degrees of similarity in DNA damage responses between ES and iPS cells were found. Even though reprogramming did not alter checkpoint signaling following DNA damage, dramatic changes in cell cycle structure, including a high percentage of cells in the S phase, increased radiosensitivity and loss of DNA damage-induced G(1)/S cell cycle arrest, were observed in stem cells generated by induced pluripotency.\ud \u

    Deletion of individual Ku subunits in mice causes an NHEJ-independent phenotype potentially by altering apurinic/apyrimidinic site repair

    Get PDF
    Ku70 and Ku80 form a heterodimer called Ku that forms a holoenzyme with DNA dependent-protein kinase catalytic subunit (DNA-PKCS) to repair DNA double strand breaks (DSBs) through the nonhomologous end joining (NHEJ) pathway. As expected mutating these genes in mice caused a similar DSB repair-defective phenotype. However, ku70-/- cells and ku80 -/- cells also appeared to have a defect in base excision repair (BER). BER corrects base lesions, apurinic/apyrimidinic (AP) sites and single stand breaks (SSBs) utilizing a variety of proteins including glycosylases, AP endonuclease 1 (APE1) and DNA Polymerase β (Pol β). In addition, deleting Ku70 was not equivalent to deleting Ku80 in cells and mice. Therefore, we hypothesized that free Ku70 (not bound to Ku80) and/or free Ku80 (not bound to Ku70) possessed activity that influenced BER. To further test this hypothesis we performed two general sets of experiments. The first set showed that deleting either Ku70 or Ku80 caused an NHEJ-independent defect. We found ku80-/- mice had a shorter life span than dna-pkcs-/- mice demonstrating a phenotype that was greater than deleting the holoenzyme. We also found Ku70-deletion induced a p53 response that reduced the level of small mutations in the brain suggesting defective BER. We further confirmed that Ku80-deletion impaired BER via a mechanism that was not epistatic to Pol β. The second set of experiments showed that free Ku70 and free Ku80 could influence BER. We observed that deletion of either Ku70 or Ku80, but not both, increased sensitivity of cells to CRT0044876 (CRT), an agent that interferes with APE1. In addition, free Ku70 and free Ku80 bound to AP sites and in the case of Ku70 inhibited APE1 activity. These observations support a novel role for free Ku70 and free Ku80 in altering BER. © 2014 Choi et al

    Effects of hexavalent chromium on the survival and cell cycle distribution of DNA repair-deficient S. cerevisiae

    No full text
    A broad spectrum of genetic damage results from exposure to hexavalent chromium. These lesions can result in DNA and RNA polymerase arrest, chromosomal aberrations, point mutations and deletions. Because of the complexity of Cr genotoxicity, the repair of Cr(VI)-induced DNA damage is poorly understood. Therefore, our aim was to investigate the sensitivities of DNA repair-deficient Saccharomyces cerevisiae strains to Cr(VI)-induced growth inhibition and lethality. Wild-type, translesion synthesis (rev3) and excision repair (apn1, ntg1, ntg2, rad1) mutants exhibited similar survival following Cr(VI) treatment (0-50mM) and underwent at least one population doubling within 2-4h post-treatment. The simultaneous loss of several excision repair genes (apn1 rad1 ntg1 ntg2) led to slower growth after Cr(VI) exposure (10mM) manifested as an initial delay in S phase progression. Higher concentrations of Cr(VI) (25mM) resulted in a prolonged transit through S phase in every strain tested. A G2/M arrest was evident within 1-2h after Cr(VI) treatment (10mM) in all strains and cells subsequently divided after this transient delay. In contrast to all other strains, only recombination-deficient (rad52, rad52 rev3) yeast were markedly hypersensitive towards Cr(VI) lethality. RAD52 mutant strains (rad52, rad52 rev3) also exhibited a significant delay (\u3e6h) in the resumption of replication after Cr(VI) exposure which was related to the immediate and apparently terminal arrest of these yeast in G2/M after Cr(VI) treatment. These results, taken together with the recombinogenic effects of Cr(VI) in yeast containing a functional RAD52 gene, suggest that RAD52-mediated recombination is critical for the normal processing of lethal Cr-induced genetic lesions and exit from G2 arrest. Furthermore, only the combined inactivation of multiple excision repair genes affects cell growth after Cr(VI) treatment. © 2002 Elsevier Science B.V. All rights reserved

    Fanconi anemia complementation group A cells are hypertensive to chromium(VI)-induced toxicity

    No full text
    Fanconi anemia (FA) is an autosomal recessive disorder characterized by diverse developmental abnormalities, progressive bone marrow failure, and a markedly increased incidence of malignancy. FA cells are hypersensitive to DNA cross-linking agents, suggesting a general defect in the repair of DNA cross-links. Some forms of hexavalent chromium [Cr(VI)] are implicated as respiratory carcinogens and induce several types of DNA lesions, including ternary DNA-Cr-DNA interstrand cross-links (Cr-DDC). We hypothesized that human FA complementation group A (FA-A) cells would be hypersensitive to Cr(VI) and Cr(VI)-induces apoptosis. Using phosphatidylserine translocation and caspase-3 activation, human FA-A fibroblasts were found to be markedly hypersensitive to chromium-induced apptosis compared with CRL-1634 cells, which are normal human foreskin fibroblasts (CRL). The clonogenicity of FA-A cells was also significantly decreased compared with CRL cells after Cr(VI) treatment. There was no significant difference in either Cr(VI) uptake or Cr-DNA adduct formation between FA-A and CRL cells. These results show that FA-A cells are hupersensitive to Cr(VI) and Cr-incuced apoptosis and that this hupersensitivity is not due to increased Cr(VI) uptake or increased Cr-DNA adduct formation. The results also suggest that Cr-DDC may be proapoptotic lesions. These results are the first to show that FA cells are hypersensitive to an environmentally relevant DNA cross-linking agent

    Resistance to apoptosis, increased growth potential, and altered gene expression in cells that survived genotoxic hexavalent chromium [Cr(VI)] exposure

    No full text
    Certain hexavalent chromium [Cr(VI)] compounds are known genotoxic respiratory carcinogens, which induce apoptosis as a predominant mode of cell death. Selection of cells that are resistant to apoptosis may be a factor in tumour progression. We developed sub-populations of telomerase-transfected human fibroblasts (BJ-hTERT) that survived a 99% clonogenically lethal exposure to Cr(VI) (B-5Cr). B-5Cr cells were markedly resistant to apoptosis induced by several agents and exhibited increased clonogenic survival, especially at apoptogenic doses. B-5Cr cells did not exhibit altered cellular uptake of Cr(VI) and retained a normal p53 response to Cr(VI) exposure. We conducted large-scale gene expression analysis at different time-points after a secondary genotoxic Cr(VI) insult in B-5Cr and BJ-hTERT cells using Affymetrix Genechip® human genome arrays. Cr(VI) exposure led to differential regulation of many genes, which affect a diverse set of cellular activities such as transcription, signal transduction, stress response, cell adhesion, DNA repair, apoptosis and cell cycle modulation. We compared Cr(VI)-induced altered gene expression in the B-5Cr cells to that in the parental cells and identified 223, 147 and 204 genes with at least a two-fold difference in expression at 4, 8 and 18 h after exposure, respectively. Cluster analysis by gene function revealed altered expression of genes involved in apoptosis, cell cycle regulation and DNA repair. Our data suggest an alteration in gene expression that may favor cell survival and/or incomplete DNA repair after genotoxic exposure. Selection of cells with altered expression of these genes may constitute the early stages of tumour progression. © Springer Science + Business Media, Inc. 2005

    Deletion of individual Ku subunits in mice causes an NHEJ-independent phenotype potentially by altering apurinic/apyrimidinic site repair

    No full text
    Abstract Ku70 and Ku80 form a heterodimer called Ku that forms a holoenzyme with DNA dependent-protein kinase catalytic subunit (DNA-PK CS ) to repair DNA double strand breaks (DSBs) through the nonhomologous end joining (NHEJ) pathway. As expected mutating these genes in mice caused a similar DSB repair-defective phenotype. However, ku70 -/-cells and ku80 -/-cells also appeared to have a defect in base excision repair (BER). BER corrects base lesions, apurinic/apyrimidinic (AP) sites and single stand breaks (SSBs) utilizing a variety of proteins including glycosylases, AP endonuclease 1 (APE1) and DNA Polymerase b (Pol b). In addition, deleting Ku70 was not equivalent to deleting Ku80 in cells and mice. Therefore, we hypothesized that free Ku70 (not bound to Ku80) and/or free Ku80 (not bound to Ku70) possessed activity that influenced BER. To further test this hypothesis we performed two general sets of experiments. The first set showed that deleting either Ku70 or Ku80 caused an NHEJ-independent defect. We found ku80 -/-mice had a shorter life span than dna-pkcs -/-mice demonstrating a phenotype that was greater than deleting the holoenzyme. We also found Ku70-deletion induced a p53 response that reduced the level of small mutations in the brain suggesting defective BER. We further confirmed that Ku80-deletion impaired BER via a mechanism that was not epistatic to Pol b. The second set of experiments showed that free Ku70 and free Ku80 could influence BER. We observed that deletion of either Ku70 or Ku80, but not both, increased sensitivity of cells to CRT0044876 (CRT), an agent that interferes with APE1. In addition, free Ku70 and free Ku80 bound to AP sites and in the case of Ku70 inhibited APE1 activity. These observations support a novel role for free Ku70 and free Ku80 in altering BER

    Molecular beacon assay to measure APE1 activity.

    No full text
    <p>No Ku70 was compared to Ku70 added to substrate with or without APE1. Fluorescence: the excitation wavelength is 485 nm and the emission wavelength is 538 nm. Shown is the average of three experiments with error bars (standard deviation). (A) Ku70<sup>1–609</sup> (full-length Ku70) (B) Ku70<sup>115–609</sup>. (C) Ku70<sup>1–115</sup>. (D) Ku70<sup>1–300</sup>.</p

    <i>In vivo</i> analysis. Life span for <i>ku80<sup>-/-</sup></i> and <i>dna-pk<sub>cs</sub><sup>-/-</sup></i> (A) males and (B) females (45 mice in each cohort).

    No full text
    <p>Mutation spectrum in <i>ku70<sup>-/-</sup></i> mice with and without p53 in the (C) liver and (D) brain. Size changes are chromosomal rearrangements that include translocations and large insertions/deletions. No size changes are point mutations (base changes and small insertions/deletions). A student t test was performed for a statistical analysis and tables are presented showing all possible comparisons.</p

    Epistatic analysis for Ku80 and Pol β.

    No full text
    <p>All cells are deleted for p53 (even controls) to avoid early replicative senescence. Shown is the average of three experiments. (A) Western showing RNAi knockdown of Pol β in <i>p53<sup>-/-</sup></i> control and <i>ku80<sup>-/-</sup> p53<sup>-/-</sup></i> fibroblasts that stably express a shRNA plasmid specific for mouse Pol β (three clones). PCNA was loaded to normalize for nuclear protein levels. The expression of endogenous Pol β in the shRNA-transduced cell lines was undetectable by immunoblot, consistent with our earlier reports for this mouse Pol β -specific shRNA <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0086358#pone.0086358-Trivedi1" target="_blank">[30]</a>. (B) Dose-response to MMS for <i>p53<sup>-/-</sup></i> control and <i>ku80<sup>-/-</sup> p53<sup>-/-</sup></i> fibroblasts with and without mouse Pol β shRNA expression. (C) Western showing increased Pol β levels for the <i>ku80<sup>-/-</sup> p53<sup>-/-</sup></i> fibroblasts that stably express a Pol β expression plasmid (two clones). Beta-actin was loaded to normalize for cellular protein levels. (D) Pol β -overexpression rescues Ku80-mutant phenotype for MMS.</p
    corecore