2 research outputs found
data_sheet_1.PDF
<p>The ability of cytotoxic lymphocytes (CL) to eliminate virus-infected or cancerous target cells through the granule exocytosis death pathway is critical to immune homeostasis. Congenital loss of CL function due to bi-allelic mutations in PRF1, UNC13D, STX11, or STXBP2 leads to a potentially fatal immune dysregulation, familial haemophagocytic lymphohistiocytosis (FHL). This occurs due to the failure of CLs to release functional pore-forming protein perforin and, therefore, inability to kill the target cell. Bi-allelic mutations in partner proteins STXBP2 or STX11 impair CL cytotoxicity due to failed docking/fusion of cytotoxic secretory granules with the plasma membrane. One unique feature of STXBP2- and STX11-deficient patient CLs is that their short-term in vitro treatment with a low concentration of IL-2 partially or completely restores natural killer (NK) cell degranulation and cytotoxicity, suggesting the existence of a secondary, yet unknown, pathway for secretory granule exocytosis. In the current report, we studied NK and T-cell function in an individual with late presentation of FHL due to hypomorphic bi-allelic mutations in STXBP2. Intriguingly, in addition to the expected alterations in the STXBP2 and STX11 proteins, we also observed a concomitant significant reduction in the expression of homologous STXBP1 protein and its partner STX1, which had never been implicated in CL function. Further analysis of human NK and T cells demonstrated a functional role for the STXBP1/STX1 axis in NK and CD8+ T-cell cytotoxicity, where it appears to be responsible for as much as 50% of their cytotoxic activity. This discovery suggests a unique and previously unappreciated interplay between STXBP/Munc proteins regulating the same essential granule exocytosis pathway.</p
Exploration of a Series of 5‑Arylidene-2-thioxoimidazolidin-4-ones as Inhibitors of the Cytolytic Protein Perforin
A series of novel 5-arylidene-2-thioxoimidazolidin-4-ones
were
investigated as inhibitors of the lymphocyte-expressed pore-forming
protein perforin. Structure–activity relationships were explored
through variation of an isoindolinone or 3,4-dihydroisoquinolinone
subunit on a fixed 2-thioxoimidazolidin-4-one/thiophene core. The
ability of the resulting compounds to inhibit the lytic activity of
both isolated perforin protein and perforin delivered in situ by natural
killer cells was determined. A number of compounds showed excellent
activity at concentrations that were nontoxic to the killer cells,
and several were a significant improvement on previous classes of
inhibitors, being substantially more potent and soluble. Representative
examples showed rapid and reversible binding to immobilized mouse
perforin at low concentrations (≤2.5 μM) by surface plasmon
resonance and prevented formation of perforin pores in target cells
despite effective target cell engagement, as determined by calcium
influx studies. Mouse PK studies of two analogues showed <i>T</i><sub>1/2</sub> values of 1.1–1.2 h (dose of 5 mg/kg iv) and
MTDs of 60–80 mg/kg (ip)