502 research outputs found

    Taxonomic voucher specimens for study of post-wildfire forest habitat in Douglas County, Oregon

    Get PDF
    this publication provides data about voucher specimens deposited in the museum in conjunction with a research project on pollinators

    Taxonomic voucher specimens for study of bee communities in intensively managed Douglas-fir forests in the Oregon Coast Range

    Get PDF
    Understanding how pollinators respond to anthropogenic land use is key to conservation of biodiversity and ecosystem services, but few studies have addressed this topic in coniferous forests, particularly those managed intensively for wood production. This study reports on voucher material generated as part of Zitomer et al. (2023), that assessed changes in wild bee communities with time since harvest in 60 intensively managed Douglas-fir (Pseudotsuga menziesii) stands in the Oregon Coast Range across a gradient in stand age spanning a typical harvest rotation (0-37 years post-harvest). We additionally assessed relationships of bee diversity and community composition to relevant habitat features, including availability of floral resources and nest sites, understory vegetation characteristics, and composition of the surrounding landscape. Specimens were collected using a combination of passive sampling methods-blue vane traps and white, blue, and yellow bowl traps- and hand-netting and were identified to the lowest possible taxonomic level by A.R. Moldenke and L.R. Best. Four hundred and ten taxonomic voucher specimens were deposited into the Oregon State Arthropod Collection (Accession# OSAC_AC_2023_01_09-001-01) to serve as a reference for future research

    Stratus 11 : Eleventh Setting of the Stratus Ocean Reference Station Cruise on board RV Moana Wave, March 31 - April 16, 2011, Arica - Arica, Chile

    Get PDF
    The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology, air-sea fluxes of heat, freshwater, and momentum, and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with past cruises that have come between October and January. A NOAA vessel was not available, so this cruise was conducted on the chartered ship, Moana Wave, belonging to Stabbert Maritime. During the 2011 cruise on the Moana Wave to the ORS Stratus site, the primary activities were the recovery of the subsurface part of the Stratus 10 WHOI surface mooring, deployment of a new (Stratus 11) WHOI surface mooring, in-situ calibration of the buoy meteorological sensors by comparison with instrumentation installed on the ship by staff of the NOAA Earth System Research Laboratory (ESRL), and collection of underway and on station oceanographic data to continue to characterize the upper ocean in the stratus region. The Stratus 10 mooring had parted, and the surface buoy and upper part had been recovered earlier. Underway CTD (UCTD) profiles were collected along the track and during surveys dedicated to investigating eddy variability in the region. Surface drifters and subsurface floats were also launched along the track. The intent was also to visit a buoy for the Pacific tsunami warning system maintained by the Hydrographic and Oceanographic Service of the Chilean Navy (SHOA). This DART (Deep- Ocean Assessment and Reporting of Tsunami) buoy had been deployed in December 2010.Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA0900AR432012

    Stratus Ocean Reference Station (20˚S, 85˚W), mooring recovery and deployment cruise R/V Revelle cruise dana 03, November 10 - November 26, 2003

    Get PDF
    The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile and Peru is being maintained to provide ongoing, climate-quality records of surface meteorology, of air-sea fluxes of heat, freshwater, and momentum, and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station, hereafter ORS Stratus, is supported by the National Oceanic and Atmospheric Administrations (NOAA) Climate Observation Program. It is recovered and redeployed annually, with cruises that have come in October or November. During the November 2003 cruise of Scripps Institution of Oceanography's R/V Roger Revelle to the ORS Stratus site, the primary activities where the recovery of the WHOI surface mooring that had been deployed in October 2002, the deployment of a new WHOI surface mooring at that site, the in-situ calibration of the buoy meteorological sensors by comparison with instrumentation put on board by Chris Fairall of the NOAA Environmental Technology Laboratory (ETL), and observations of the stratus clouds and lower atmosphere by NOAA ETL and Jason Tomlinson from Texas A&M. The ORS Stratus buoys are equipped with two Improved Meteorological systems, which provide surface wind speed and direction, air temperature, relative humidity, barometric pressure, incoming shortwave radiation, incoming longwave radiation, precipitation rate, and sea surface temperature. The IMET data are made available in near real time using satellite telemetry. The mooring line carries instruments to measure ocean salinity, temperature, and currents. On some deployments, additional instrumentation is attached to the mooring to measure rainfall and bio-optical variability. The ETL instrumentation used during the 2003 cruise included a cloud radar, radiosonde balloons, and sensors for mean and turbulent surface meteorology. In addition to this work, buoy work was done in support of the Ecuadorian Navy Institute of Oceanography (INOCAR) and of the Chilean Navy Hydrographic and Oceanographic Service (SHOA). The surface buoy, oceanographic instrumentation, and upper 500 m of an INOCAR surface mooring at 2°S, 84°W that had been vandalized were recovered and transferred to the Ecuadorian Navy vessel B. A. E. Calicuchima. A tsunami warning mooring was installed at 75°W, 20°S for SHOA. SHOA personnel onboard were trained during the cruise by staff from the NOAA Pacific Marine Environmental Laboratory (PMEL) and National Data Buoy Center (NDBC). The cruise hosted two teachers participating in NOAA's Teacher at Sea Program, Deb Brice from San Marcos, California and Viviana Zamorano from Arica, Chile.Funding was provided by the National Oceanic and Atmospheric Administration uncer Contract Number NA17RJ1223

    Stratus 12 : twelfth setting of the Stratus Ocean Reference Station

    Get PDF
    The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology, air-sea fluxes of heat, freshwater, and momentum, and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually. A NOAA vessel was not available, so this cruise was conducted on the Melville, operated by the Scripps Institution of Oceanography. During the 2012 cruise on the Melville to the ORS Stratus site, the primary activities were the deployment of the Stratus 12 WHOI surface mooring, recovery of the previous (Stratus 11) WHOI surface mooring, in-situ calibration of the buoy meteorological sensors by comparison with instrumentation installed on the ship, and collection of underway and on station oceanographic data to continue to characterize the upper ocean in the stratus region. Underway CTD (UCTD) profiles were collected along the track. Surface drifters and subsurface floats were also launched along the track.Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA09OAR4320129

    WHOI Hawaii Ocean Timeseries Station (WHOTS) : WHOTS-6 2009 mooring turnaround cruise report

    Get PDF
    The Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Timeseries Site (WHOTS), 100 km north of Oahu, Hawaii, is intended to provide long-term, high-quality air-sea fluxes as a part of the NOAA Climate Observation Program. The WHOTS mooring also serves as a coordinated part of the Hawaiian Ocean Timeseries (HOT) program, contributing to the goals of observing heat, fresh water and chemical fluxes at a site representative of the oligotrophic North Pacific Ocean. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 22.75°N, 158°W by successive mooring turnarounds. These observations will be used to investigate air–sea interaction processes related to climate variability. The first WHOTS mooring (WHOTS-1) was deployed in August 2004. Turnaround cruises for successive moorings (WHOTS-2 through WHOTS-5) have typically been in either June or July. This report documents recovery of the WHOTS-5 mooring and deployment of the sixth mooring (WHOTS-6). The moorings utilize Surlyn foam buoys as the surface element and are outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each ASIMET system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 155 m of the mooring is outfitted with oceanographic sensors for the measurement of temperature, conductivity and velocity in a cooperative effort with R. Lukas of the University of Hawaii (UH). A pCO2 system is installed on the buoy in a cooperative effort with Chris Sabine at the Pacific Marine Environmental Laboratory. Dr. Frank Bradley, CSIRO, Australia, assisted with meteorological sensor comparisons. A NOAA “Teacher at Sea” and a NOAA “Teacher in the Lab” participated in the cruise. The WHOTS mooring turnaround was done on the University of Hawaii research vessel Kilo Moana, Cruise KM-09-16, by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution in cooperation with UH and NOAA’s Earth System Research Laboratory, Physical Sciences Division (ESRL/PSD). The cruise took place between 9 and 17 July 2009. Operations began with deployment of the WHOTS-6 mooring on 10 July at approximately 22°40.0'N, 157°57.0'W in 4758 m of water. This was followed by meteorological intercomparisons and CTDs at the WHOTS-6 and WHOTS-5 sites. The WHOTS-5 mooring was recovered on 15 July 2009. The Kilo Moana then moved to the HOT central site (22°45.0'N, 158°00.0'W) for CTD casts. This report describes the cruise operations in more detail, as well as some of the in-port operations and pre-cruise buoy preparations.Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA17RJ1223 for the Cooperative Institute for Climate and Ocean Research (CICOR)

    Using Network Component Analysis to Dissect Regulatory Networks Mediated by Transcription Factors in Yeast

    Get PDF
    Understanding the relationship between genetic variation and gene expression is a central question in genetics. With the availability of data from high-throughput technologies such as ChIP-Chip, expression, and genotyping arrays, we can begin to not only identify associations but to understand how genetic variations perturb the underlying transcription regulatory networks to induce differential gene expression. In this study, we describe a simple model of transcription regulation where the expression of a gene is completely characterized by two properties: the concentrations and promoter affinities of active transcription factors. We devise a method that extends Network Component Analysis (NCA) to determine how genetic variations in the form of single nucleotide polymorphisms (SNPs) perturb these two properties. Applying our method to a segregating population of Saccharomyces cerevisiae, we found statistically significant examples of trans-acting SNPs located in regulatory hotspots that perturb transcription factor concentrations and affinities for target promoters to cause global differential expression and cis-acting genetic variations that perturb the promoter affinities of transcription factors on a single gene to cause local differential expression. Although many genetic variations linked to gene expressions have been identified, it is not clear how they perturb the underlying regulatory networks that govern gene expression. Our work begins to fill this void by showing that many genetic variations affect the concentrations of active transcription factors in a cell and their affinities for target promoters. Understanding the effects of these perturbations can help us to paint a more complete picture of the complex landscape of transcription regulation. The software package implementing the algorithms discussed in this work is available as a MATLAB package upon request
    • 

    corecore