2 research outputs found

    PHIL and Squid Embolization of Cerebral Arteriovenous Malformation: A Retrospective Case Series of 23 Patients

    Get PDF
    Precipitating hydrophobic injectable liquid (PHIL; MicroVention, Aliso Viejo, CA, USA) and Squid (Balt, Irvine, CA, USA) are 2 newer liquid embolic agents used in endovascular embolization of cerebral arteriovenous malformation (AVM). This study aims to investigate and compare the effectiveness and safety profile of the 2 newer liquid embolic agents in the embolization of cerebral AVM. This is a retrospective study on all patients diagnosed with cerebral AVM undergoing endovascular embolization with liquid embolic agents PHIL and Squid admitted to the Division of Neurosurgery, Department of Surgery in Prince of Wales Hospital from January 2014 to June 2021. Twenty-three patients with cerebral AVM were treated with 34 sessions of endovascular embolization with either PHIL or Squid (17 sessions each) liquid embolic agents with a male to female ratio of 2.3:1 (male 16; female 7) and mean age of 44.6 (range, 12 to 67). The mean total nidus obliteration rate per session was 57% (range, 5% to 100%). Twenty-one patients (91.3%) received further embolization, stereotactic radiosurgery, or surgical excision after initial endovascular embolization. There were 2 morbidities (1 neurological and 1 non-neurological, 6%) and no mortalities (0%). All patients had static or improvement in modified Rankin Scale at 3 to 6 months at discharge. PHIL and Squid are effective and safe liquid embolic agents for endovascular embolization of cerebral AVM, achieving satisfactory nidal obliteration rates and patient functional outcomes

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore