2 research outputs found

    Perovskite Crystals for Tunable White Light Emission

    No full text
    A significant fraction of global electricity demand is for lighting. Enabled by the realization and development of efficient GaN blue light-emitting diodes (LEDs), phosphor-based solid-state white LEDs provide a much higher efficiency alternative to incandescent and fluorescent lighting, which are being broadly implemented. However, a key challenge for this industry is to achieve the right photometric ranges and application-specific emission spectra via cost-effective means. Here, we synthesize organic–inorganic lead halide-based perovskite crystals with broad spectral tuneability. By tailoring the composition of methyl and octlyammonium cations in the colloidal synthesis, meso- to nanoscale 3D crystals (5–50 nm) can be formed with enhanced photoluminescence efficiency. By increasing the octlyammonium cations content, we observe platelet formation of 2D layered perovskite sheets; however, these platelets appear to be less emissive than the 3D crystals. We further manipulate the halide composition of the perovskite crystals to achieve emission covering the entire visible spectrum. By blending perovskite crystals with different emission wavelengths in a polymer host, we demonstrate the potential to replace conventional phosphors and provide the means to replicate natural white light when excited by a blue GaN LED

    Photon Reabsorption in Mixed CsPbCl<sub>3</sub>:CsPbI<sub>3</sub> Perovskite Nanocrystal Films for Light-Emitting Diodes

    No full text
    Cesium lead halide nanocrystals, CsPbX<sub>3</sub> (X = Cl, Br, I), exhibit photoluminescence quantum efficiencies approaching 100% without the core–shell structures usually used in conventional semiconductor nanocrystals. These high photoluminescence efficiencies make these crystals ideal candidates for light-emitting diodes (LEDs). However, because of the large surface area to volume ratio, halogen exchange between perovskite nanocrystals of different compositions occurs rapidly, which is one of the limiting factors for white-light applications requiring a mixture of different crystal compositions to achieve a broad emission spectrum. Here, we use mixtures of chloride and iodide CsPbX<sub>3</sub> (X = Cl, I) perovskite nanocrystals where anion exchange is significantly reduced. We investigate samples containing mixtures of perovskite nanocrystals with different compositions and study the resulting optical and electrical interactions. We report excitation transfer from CsPbCl<sub>3</sub> to CsPbI<sub>3</sub> in solution and within a poly­(methyl methacrylate) matrix via photon reabsorption, which also occurs in electrically excited crystals in bulk heterojunction LEDs
    corecore