3 research outputs found

    Modeling Concrete Masonry Walls Subjected To Explosive Loads

    Get PDF
    Concrete masonry unit walls subjected to blast pressure were analyzed with the finite element method, with the goal of developing a computationally-efficient and accurate model. Wall behavior can be grouped into three modes of failure, which correspond to three ranges of blast pressures. Computational results were compared to high-speed video images and debris velocities obtained from experimental data. A parametric analysis was conducted to determine the sensitivity of computed results to critical modeling values. It was found that the model has the ability to replicate experimental results with good agreement. However, it was also found that, without knowledge of actual material properties of the specific wall to be modeled, computational results are not reliable predictors of wall behavior

    Modeling Concrete Masonry Walls Subjected to Explosive Loads

    Full text link

    Fully Coupled FE Analyses of Buried Structures

    No full text
    Current procedures for determining the response of buried structures to the effects of the detonation of buried high explosives recommend decoupling the free-field stress analysis from the structure response analysis. A fully coupled (explosive–soil structure) finite element analysis procedure was developed so that the accuracies of current decoupling procedures could be evaluated. Comparisons of the results of analyses performed using this procedure with scale-model experiments indicate that this finite element procedure can be used to effectively evaluate the accuracies of the methods currently being used to decouple the free-field stress analysis from the structure response analysis
    corecore