3,139 research outputs found

    Spatial distribution of cell-cell and cell-ECM adhesions regulates force balance while main-taining E-cadherin molecular tension in cell pairs.

    Get PDF
    Mechanical linkage between cell-cell and cell-extracellular matrix (ECM) adhesions regulates cell shape changes during embryonic development and tissue homoeostasis. We examined how the force balance between cell-cell and cell-ECM adhesions changes with cell spread area and aspect ratio in pairs of MDCK cells. We used ECM micropatterning to drive different cytoskeleton strain energy states and cell-generated traction forces and used a Förster resonance energy transfer tension biosensor to ask whether changes in forces across cell-cell junctions correlated with E-cadherin molecular tension. We found that continuous peripheral ECM adhesions resulted in increased cell-cell and cell-ECM forces with increasing spread area. In contrast, confining ECM adhesions to the distal ends of cell-cell pairs resulted in shorter junction lengths and constant cell-cell forces. Of interest, each cell within a cell pair generated higher strain energies than isolated single cells of the same spread area. Surprisingly, E-cadherin molecular tension remained constant regardless of changes in cell-cell forces and was evenly distributed along cell-cell junctions independent of cell spread area and total traction forces. Taken together, our results showed that cell pairs maintained constant E-cadherin molecular tension and regulated total forces relative to cell spread area and shape but independently of total focal adhesion area

    Impacts of Beef Cattle–Grazing Systems on Cattle Distribution and Streambank Erosion

    Get PDF
    Many of Iowa’s surface waters contain high sediment and phosphorus(P) concentrations. It is recognized that overgrazing along pasture streams may result in soil erosion and manure deposition that contribute to P loading of pasture streams. Little research has evaluated the effects of grazing management on sediment and P loading of pasture streams in the Midwest, but grazing management is still generally considered to limit sediment and P loading of pasture streams. The objective of this study was to measure the effects of beef cattle– grazing systems on the spatial and temporal distribution patterns of cattle, the resulting impacts on selected pasture characteristics, and streambank erosion from pasture streams

    A New Approach to Spatial Covariance Modeling of Functional Brain Imaging Data: Ordinal Trend Analysis

    Get PDF
    In neuroimaging studies of human cognitive abilities, brain activation patterns that include regions that are strongly interactive in response to experimental task demands are of particular interest. Among the existing network analyses, partial least squares (PLS; McIntosh, 1999; McIntosh, Bookstein, Haxby, & Grady, 1996) has been highly successful, particularly in identifying group differences in regional functional connectivity, including differences as diverse as those associated with states of awareness and normal aging. However, we address the need for a within-group model that identifies patterns of regional functional connectivity that exhibit sustained activity across graduated changes in task parameters. For example, predictions of sustained connectivity are commonplace in studies of cognition that involve a series of tasks over which task difficulty increases (Baddeley, 2003). We designed ordinal trend analysis (OrT) to identify activation patterns that increase monotonically in their expression as the experimental task parameter increases, while the correlative relationships between brain regions remain constant. Of specific interest are patterns that express positive ordinal trends on a subject-by-subject basis. A unique feature of OrT is that it recovers information about functional connectivity based solely on experimental design variables. In particular, there is no requirement by OrT to provide either a quantitative model of the uncertain relationship between functional brain circuitry and subject variables (e.g., task performance and IQ) or partial information about the regions that are functionally connected. In this letter, we provide a step-by-step recipe of the computations performed in the new OrT analysis, including a description of the inferential statistical methods applied. Second, we describe applications of OrT to an event-related fMRI study of verbal working memory and H2 15 O-PET study of visuomotor learning. In sum, OrT has potential applications to not only studies of young adults and their cognitive abilities, but also studies of normal aging and neurological and psychiatric disease

    Brain Networks Associated with Cognitive Reserve in Healthy Young and Old Adults

    Get PDF
    In order to understand the brain networks that mediate cognitive reserve, we explored the relationship between subjects' network expression during the performance of a memory test and an index of cognitive reserve. Using H215O positron emission tomography, we imaged 17 healthy older subjects and 20 young adults while they performed a serial recognition memory task for nonsense shapes under two conditions: low demand, with a unique shape presented in each study trial; and titrated demand, with a study list size adjusted so that each subject recognized shapes at 75% accuracy. A factor score that summarized years of education, and scores on the NART and the WAIS-R Vocabulary subtest was used as an index of cognitive reserve. The scaled subprofile model was used to identify a set of functionally connected regions (or topography) that changed in expression across the two task conditions and was differentially expressed by the young and elderly subjects. The regions most active in this topography consisted of right hippocampus, posterior insula, thalamus, and right and left operculum; we found concomitant deactivation in right lingual gyrus, inferior parietal lobe and association cortex, left posterior cingulate, and right and left calcarine cortex. Young subjects with higher cognitive reserve showed increased expression of the topography across the two task conditions. Because this topography, which is responsive to increased task demands, was differentially expressed as a function of reserve level, it may represent a neural manifestation of innate or acquired reserve. In contrast, older subjects with higher cognitive reserve showed decreased expression of the topography across tasks. This suggests some functional reorganization of the network used by the young subjects. Thus, for the old subjects this topography may represent an altered, compensatory network that is used to maintain function in the face of age-related physiological changes
    • …
    corecore