28 research outputs found

    Association of Ataxia Telangiectasia Mutated (ATM) Gene Mutation/Deletion with Rhabdomyosarcoma – retraction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rhabdomyosarcoma is a common malignancy in children. There are two major types of rhabdomyosarcomas, the embryonal and the alveolar, differing in cytogenetic and morphologic features. The alveolar type of rhabdomyosarcoma is frequently associated with chromosome translocation t(2, 13) and poor clinical prognosis. Pathogenesis of rhabdomyosarcoma remains obscure, and especially it occurs in the location where skeletal muscle is absent. We report here that there is a high frequency of association of rhabdomyosarcoma with ataxia telangiectasia mutated (ATM) gene mutation/deletion.</p> <p>Result</p> <p>Totally 17 cases of rhabdomyosarcoma specimens were studied by immunohistochemical or immunofluorescent staining with ATM antibody and revealed that 7 of the 17 cases were negative for ATM expression (41%). Further analyses of rhabdomyosarcoma cell lines with RT-PCR revealed that in Rh30 cells, an alveolar rhabdomyosarcoma cell line, there are three separate deletions/mutations of the ATM mRNA. Western blotting analysis of the Rh30 cellular extract with anti-ATM antibody showed that there is an aberrant form of ATM protein within the Rh30 cells that are smaller than normal control.</p> <p>Conclusion</p> <p>These results suggest a link of ATM gene deletion/mutation with rhabdomyosarcoma, and since ATM kinase is a crucial regulatory protein in DNA damage repair signaling pathway, and ATM deletion/mutation may contribute to pathogenesis of rhabdomyosarcoma.</p

    Modulation of vimentin-containing intermediate filament distribution and phosphorylation in living fibroblasts by the cAMP-dependent protein kinase

    No full text
    Abstract. Microinjection of the purified catalytic subunit of the cAMP-dependent protein kinase (A-kinase) into living rat embryo fibroblasts leads to dramatic changes in vimentin intermediate filament (IF) organization, involving the collapse of the filaments into tight bundles. In some cell types, this rearrangement of the IF proceeds further, leading to an apparent loss of filament integrity, resulting in a punctate staining pattern throughout the cytoplasm. Both these types of IF rearrangement are fully reversible, and similar to structural changes previously described for IF during mitosis. As shown by electron microscopy, in rat embryo fibroblasts these changes in IF structure do not involve the loss of the 10-nM filament structure but instead correspond to the bundling together of 2
    corecore