205 research outputs found

    An integrated analysis of genes and pathways exhibiting metabolic differences between estrogen receptor positive breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The sex hormone estrogen (E2) is pivotal to normal mammary gland growth and differentiation and in breast carcinogenesis. In this <it>in silico </it>study, we examined metabolic differences between ER(+)ve breast cancer cells during E2 deprivation.</p> <p>Methods</p> <p>Public repositories of SAGE and MA gene expression data generated from E2 deprived ER(+)ve breast cancer cell lines, MCF-7 and ZR75-1 were compared with normal breast tissue. We analyzed gene ontology (GO), enrichment, clustering, chromosome localization, and pathway profiles and performed multiple comparisons with cell lines and tumors with different ER status.</p> <p>Results</p> <p>In all GO terms, biological process (BP), molecular function (MF), and cellular component (CC), MCF-7 had higher gene utilization than ZR75-1. Various analyses showed a down-regulated immune function, an up-regulated protein (ZR75-1) and glucose metabolism (MCF-7). A greater percentage of 77 common genes localized to the q arm of all chromosomes, but in ZR75-1 chromosomes 11, 16, and 19 harbored more overexpressed genes. Despite differences in gene utilization (electron transport, proteasome, glycolysis/gluconeogenesis) and expression (ribosome) in both cells, there was an overall similarity of ZR75-1 with ER(-)ve cell lines and ER(+)ve/ER(-)ve breast tumors.</p> <p>Conclusion</p> <p>This study demonstrates integral metabolic differences may exist within the same cell subtype (luminal A) in representative ER(+)ve cell line models. Selectivity of gene and pathway usage for strategies such as energy requirement minimization, sugar utilization by ZR75-1 contrasted with MCF-7 cells, expressing genes whose protein products require ATP utilization. Such characteristics may impart aggressiveness to ZR75-1 and may be prognostic determinants of ER(+)ve breast tumors.</p

    Repression of histone H5 gene expression in chicken mature erythrocytes is correlated with reduced DNA-binding activities of transcription factors SP1 and GATA-1

    Get PDF
    AbstractDuring the final stages of erythroid maturation, the expression of the chicken histone H5 gene ceases. The histone H5 promoter has binding sites for Sp1 and UPE-binding protein. The 3' histone H5 enhancer has binding sites for Sp1, GATA-1 and NF1. Here, we show that the DNA-binding activities of transcription factors Sp1 and GATA-1 is reduced 5- to 10-fold in mature cells, while the activities of UPE-binding protein and NF1 remain the same in mature and immature erythrocytes. The reduced activities of Sp1 and GATA-1 may contribute to the inactivation of the histone H5 gene in mature erythrocytes

    Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors

    Get PDF
    The zinc-dependent mammalian histone deacetylase (HDAC) family comprises 11 enzymes, which have specific and critical functions in development and tissue homeostasis. Mounting evidence points to a link between misregulated HDAC activity and many oncologic and nononcologic diseases. Thus the development of HDAC inhibitors for therapeutic treatment garners a lot of interest from academic researchers and biotechnology entrepreneurs. Numerous studies of HDAC inhibitor specificities and molecular mechanisms of action are ongoing. In one of these studies, mass spectrometry was used to characterize the affinities and selectivities of HDAC inhibitors toward native HDAC multiprotein complexes in cell extracts. Such a novel approach reproduces in vivo molecular interactions more accurately than standard studies using purified proteins or protein domains as targets and could be very useful in the isolation of inhibitors with superior clinical efficacy and decreased toxicity compared to the ones presently tested or approved. HDAC inhibitor induced-transcriptional reprogramming, believed to contribute largely to their therapeutic benefits, is achieved through various and complex mechanisms not fully understood, including histone deacetylation, transcription factor or regulator (including HDAC1) deacetylation followed by chromatin remodeling and positive or negative outcome regarding transcription initiation. Although only a very low percentage of protein-coding genes are affected by the action of HDAC inhibitors, about 40% of noncoding microRNAs are upregulated or downregulated. Moreover, a whole new world of long noncoding RNAs is emerging, revealing a new class of potential targets for HDAC inhibition. HDAC inhibitors might also regulate transcription elongation and have been shown to impinge on alternative splicing

    Water Footprint Differences of Producing Cultivars of Selected Crops in New Zealand

    Get PDF
    Water footprint (WF) is a measure of the amount of water used to produce goods and services. It is a very important concept on indicating how much water can be consumed to complete a process of growing or processing a product at a particular location. However, paucity of water footprint information in countries facing increased competition for water resources between industries limits market access and profit optimization. Water footprint differences of producing selected cultivars of potato, oca and pumpkin squash were determined under irrigation and rain-fed regimes. All crop husbandry practices were followed in potato, oca (3.3 plants m−2) and pumpkin squash (2.2 plants m−2). Water footprint was determined as the ratio of volume of evapotranspiration for irrigated and rain-fed crops plus grey water to total yield. The consumptive water use for the rain-fed crop was 75, 65 and 69% of the irrigated oca, potato and pumpkin squash, respectively, with high water consumption in heritage cultivars. The water footprint was low in pumpkin squash and highest in oca, while potato cultivars were intermediate. Irrigation reduced water footprint especially in crops more responsive to irrigation. Farmers should focus on improving the harvest index and irrigation to reduce water footprint

    Phosphorylated serine 28 of histone H3 is associated with destabilized nucleosomes in transcribed chromatin

    Get PDF
    Histone modifications and variants have key roles in the activation and silencing of genes. Phosphorylation of histone H3 at serine 10 and serine 28 is involved in transcriptional activation of genes responding to stress or mitogen-stimulated signaling pathways. The distribution of H3-modified isoforms in G0 phase chicken erythrocyte chromatin was investigated. H3 phosphorylated at serine 28 was found highly enriched in the active/competent gene fractions, as was H3 di- and trimethylated at lysine 4. The H3 variant H3.3 in this chromatin fraction was preferentially phosphorylated at serine 28. Conversely, H3 phosphorylated at serine 10 was present in all chromatin fractions, while H3 dimethylated at lysine 9 was associated with the chromatin-containing repressed genes. H3 phosphorylated at serine 28 was located at the promoter region of the transcriptionally active, but not competent, histone H5 and β-globin genes. We provide evidence that H3.3 phosphorylated at serine 28 was present in labile nucleosomes. We propose that destabilized nucleosomes containing H3.3 phosphorylated at serine 28 aid in the dynamic disassembly–assembly of nucleosomes in active promoters

    Biosynthesis of very long-chain fatty acids (C > 24) in Atlantic salmon: Cloning, functional characterisation, and tissue distribution of an Elovl4 elongase

    Get PDF
    The elongases of very long-chain fatty acids (Elovl) account for the rate-limiting condensation step of the elongation process in fatty acid (FA) biosynthesis in vertebrates. One member of the Elovl family, Elovl4, has been regarded as a critical enzyme in vertebrates in the production of the so-called very long-chain fatty acids (VLC-FA), a group of compounds that have been scarcely explored in fish. Here we report on the cloning of a novel elovl4-like elongase from Atlantic salmon. The salmon elovl4 cDNA codes for a putative protein containing 306 amino acids. Heterologous expression in yeast demonstrated that salmon Elovl4 efficiently elongated saturated FAs up to 36:0, with 24:0 and 26:0 appearing as preferred substrates. Additionally, salmon Elovl4 effectively converted C20 and C22 polyunsaturated fatty acids to elongated polyenoic products up to C36. Tissue distribution showed that elovl4 mRNA transcripts are abundant in eye, brain and testes, suggesting that, as described in mammals, these tissues are important metabolic sites for the biosynthesis of VLC-FA. Our results are discussed in comparison with the functional analyses observed in Elovl4 proteins from other vertebrates, and also other Elovl proteins investigated previously in Atlantic salmon

    Protein arginine methyltransferases PRMT1, PRMT4/CARM1 and PRMT5 have distinct functions in control of osteoblast differentiation

    Get PDF
    Osteogenic differentiation of mesenchymal cells is controlled by epigenetic enzymes that regulate post-translational modifications of histones. Compared to acetyl or methyltransferases, the physiological functions of protein arginine methyltransferases (PRMTs) in osteoblast differentiation remain minimally understood. Therefore, we surveyed the expression and function of all nine mammalian PRMT members during osteoblast differentiation. RNA-seq gene expression profiling shows that Prmt1, Prmt4/Carm1 and Prmt5 represent the most prominently expressed PRMT subtypes in mouse calvarial bone and MC3T3 osteoblasts as well as human musculoskeletal tissues and mesenchymal stromal cells (MSCs). Based on effects of siRNA depletion, it appears that PRMT members have different functional effects: (i) loss of Prmt1 stimulates and (ii) loss of Prmt5 decreases calcium deposition of mouse MC3T3 osteoblasts, while (iii) loss of Carm1 is inconsequential for calcium deposition. Decreased Prmt5 suppresses expression of multiple genes involved in mineralization (e.g., Alpl, Ibsp, Phospho1) consistent with a positive role in osteogenesis. Depletion of Prmt1, Carm1 and Prmt5 has intricate but modest time-dependent effects on the expression of a panel of osteoblast differentiation and proliferation markers but does not change mRNA levels for select epigenetic regulators (e.g., Ezh1, Ezh2, Brd2 and Brd4). Treatment with the Class I PRMT inhibitor GSK715 enhances extracellular matrix mineralization of MC3T3 cells, while blocking formation of H3R17me2a but not H4R3me2a marks. In sum, Prmt1, Carm1 and Prmt5 have distinct biological roles during osteoblast differentiation, and different types histone H3 and H4 arginine methylation may contribute to the chromatin landscape during osteoblast differentiation.</p
    • …
    corecore