4 research outputs found

    DataSheet_1_Blood gene expression predicts intensive care unit admission in hospitalised patients with COVID-19.docx

    No full text
    BackgroundThe COVID-19 pandemic has created pressure on healthcare systems worldwide. Tools that can stratify individuals according to prognosis could allow for more efficient allocation of healthcare resources and thus improved patient outcomes. It is currently unclear if blood gene expression signatures derived from patients at the point of admission to hospital could provide useful prognostic information.MethodsGene expression of whole blood obtained at the point of admission from a cohort of 78 patients hospitalised with COVID-19 during the first wave was measured by high resolution RNA sequencing. Gene signatures predictive of admission to Intensive Care Unit were identified and tested using machine learning and topological data analysis, TopMD.ResultsThe best gene expression signature predictive of ICU admission was defined using topological data analysis with an accuracy: 0.72 and ROC AUC: 0.76. The gene signature was primarily based on differentially activated pathways controlling epidermal growth factor receptor (EGFR) presentation, Peroxisome proliferator-activated receptor alpha (PPAR-Ī±) signalling and Transforming growth factor beta (TGF-Ī²) signalling.ConclusionsGene expression signatures from blood taken at the point of admission to hospital predicted ICU admission of treatment naĆÆve patients with COVID-19.</p

    Large-Scale Label-Free Quantitative Mapping of the Sputum Proteome

    No full text
    Analysis of induced sputum supernatant is a minimally invasive approach to study the epithelial lining fluid and, thereby, provide insight into normal lung biology and the pathobiology of lung diseases. We present here a novel proteomics approach to sputum analysis developed within the U-BIOPRED (unbiased biomarkers predictive of respiratory disease outcomes) international project. We present practical and analytical techniques to optimize the detection of robust biomarkers in proteomic studies. The normal sputum proteome was derived using data-independent HDMS<sup>E</sup> applied to 40 healthy nonsmoking participants, which provides an essential baseline from which to compare modulation of protein expression in respiratory diseases. The ā€œcoreā€ sputum proteome (proteins detected in ā‰„40% of participants) was composed of 284 proteins, and the extended proteome (proteins detected in ā‰„3 participants) contained 1666 proteins. Quality control procedures were developed to optimize the accuracy and consistency of measurement of sputum proteins and analyze the distribution of sputum proteins in the healthy population. The analysis showed that quantitation of proteins by HDMS<sup>E</sup> is influenced by several factors, with some proteins being measured in all participantsā€™ samples and with low measurement variance between samples from the same patient. The measurement of some proteins is highly variable between repeat analyses, susceptible to sample processing effects, or difficult to accurately quantify by mass spectrometry. Other proteins show high interindividual variance. We also highlight that the sputum proteome of healthy individuals is related to sputum neutrophil levels, but not gender or allergic sensitization. We illustrate the importance of design and interpretation of disease biomarker studies considering such protein population and technical measurement variance

    Large-Scale Label-Free Quantitative Mapping of the Sputum Proteome

    No full text
    Analysis of induced sputum supernatant is a minimally invasive approach to study the epithelial lining fluid and, thereby, provide insight into normal lung biology and the pathobiology of lung diseases. We present here a novel proteomics approach to sputum analysis developed within the U-BIOPRED (unbiased biomarkers predictive of respiratory disease outcomes) international project. We present practical and analytical techniques to optimize the detection of robust biomarkers in proteomic studies. The normal sputum proteome was derived using data-independent HDMS<sup>E</sup> applied to 40 healthy nonsmoking participants, which provides an essential baseline from which to compare modulation of protein expression in respiratory diseases. The ā€œcoreā€ sputum proteome (proteins detected in ā‰„40% of participants) was composed of 284 proteins, and the extended proteome (proteins detected in ā‰„3 participants) contained 1666 proteins. Quality control procedures were developed to optimize the accuracy and consistency of measurement of sputum proteins and analyze the distribution of sputum proteins in the healthy population. The analysis showed that quantitation of proteins by HDMS<sup>E</sup> is influenced by several factors, with some proteins being measured in all participantsā€™ samples and with low measurement variance between samples from the same patient. The measurement of some proteins is highly variable between repeat analyses, susceptible to sample processing effects, or difficult to accurately quantify by mass spectrometry. Other proteins show high interindividual variance. We also highlight that the sputum proteome of healthy individuals is related to sputum neutrophil levels, but not gender or allergic sensitization. We illustrate the importance of design and interpretation of disease biomarker studies considering such protein population and technical measurement variance

    Large-Scale Label-Free Quantitative Mapping of the Sputum Proteome

    No full text
    Analysis of induced sputum supernatant is a minimally invasive approach to study the epithelial lining fluid and, thereby, provide insight into normal lung biology and the pathobiology of lung diseases. We present here a novel proteomics approach to sputum analysis developed within the U-BIOPRED (unbiased biomarkers predictive of respiratory disease outcomes) international project. We present practical and analytical techniques to optimize the detection of robust biomarkers in proteomic studies. The normal sputum proteome was derived using data-independent HDMS<sup>E</sup> applied to 40 healthy nonsmoking participants, which provides an essential baseline from which to compare modulation of protein expression in respiratory diseases. The ā€œcoreā€ sputum proteome (proteins detected in ā‰„40% of participants) was composed of 284 proteins, and the extended proteome (proteins detected in ā‰„3 participants) contained 1666 proteins. Quality control procedures were developed to optimize the accuracy and consistency of measurement of sputum proteins and analyze the distribution of sputum proteins in the healthy population. The analysis showed that quantitation of proteins by HDMS<sup>E</sup> is influenced by several factors, with some proteins being measured in all participantsā€™ samples and with low measurement variance between samples from the same patient. The measurement of some proteins is highly variable between repeat analyses, susceptible to sample processing effects, or difficult to accurately quantify by mass spectrometry. Other proteins show high interindividual variance. We also highlight that the sputum proteome of healthy individuals is related to sputum neutrophil levels, but not gender or allergic sensitization. We illustrate the importance of design and interpretation of disease biomarker studies considering such protein population and technical measurement variance
    corecore