6 research outputs found

    Fractal analysis of track geometry data

    Get PDF
    ABSTRACT A Federal Railroad Administration sponsored research project has been ongoing to explore the use of Fractal Analysis of track geometry data for indication of track geometry roughness, maintenance planning and track substructure condition assessment. Fractal analysis provides unique numerical values (fractal dimensions) that characterize railway track geometry patterns. The fractal dimensions can be used for effective maintenance planning by providing meaningful parameters for geometry deterioration modeling, and by potentially providing information about the actual condition of the track by precise quantification of the geometry patterns. The paper will present a lucid discussion of fractal theory and will demonstrate its usefulness for quantifying railroad geometry data by highlighting key aspects of the research results. This paper also discusses the relationship between track structure conditions and fractal dimensions for use in maintenance planning and condition evaluation

    Effectiveness of Chemical Grouting and Stone Blowing as Remedial Measures to Mitigate Differential Movement at Railroad Track Transitions

    No full text
    Railway transitions like bridge approaches experience differential movements related to differences in track system stiffness, track damping characteristics, foundation type, ballast settlement from fouling and/or degradation, as well as fill and subgrade settlement. A recent research study at the University of Illinois has used advanced geotechnical instrumentation to identify and quantify different factors contributing to recurrent differential movement problems at three different bridge approaches along Amtrak’s Northeast Corridor (NEC) near Chester, Pennsylvania. Field instrumentation data have indicated excessive ballast movement to be the primary factor contributing to the “bump” development at these bridge approaches. Among the different remedial measures applied to mitigate the recurrent track geometry issues were: (1) Chemical Grouting, (2) Stone Blowing, and (3) Under-Tie Pads. This paper will discuss the implementation methods using track geometry records and instrumentation data, and highlight the effectiveness of chemical grouting and stone blowing to mitigate the differential movement problem at railroad bridge approaches. According to the trends in the transient ballast deformation data collected under train loading, both remedial measures were effective in significantly reducing excessive ballast deformation, which was the primary mechanism behind the bump development at these locations. Ballast degradation and presence of excessive fine particles in the ballast layer adversely affected the ability of the grout to bond with aggregate particles. A “clean” ballast layer, on the other hand, facilitated adequate bonding between the grout and ballast particles leading to significantly improved long-term track performance

    Stone Blowing as a Remedial Measure to Mitigate Differential Movement Problems at Railroad Bridge Approaches

    No full text
    Railroad track transitions such as bridge approaches often experience recurrent track geometry problems due to differential settlement between the bridge and the adjacent track. The resulting “bump at the end of the bridge” leads to significant passenger discomfort and causes rapid deterioration of the track as well as vehicular components. In general, railroad managers address recurrent track geometry defects through track resurfacing methods, such as tamping that involve raising the track through mechanically induced vibration and rearrangement of particles within the ballast layer. Although widely used for track resurfacing, the tamping process tends to destabilize the ballast layer, and the track may rapidly return to its former deteriorated state based on the traffic flow. The method of “stone blowing,” on the other hand, which was developed as an alternative to tamping, relies on the principle of injecting fresh ballast particles into gaps underneath ties and raising the track level rather than disturbing the packing condition of the existing ballast. In a recently completed research study in the United States, stone blowing was successfully implemented as a remedial measure to mitigate the problem of differential movement at a problematic bridge approach along Amtrak’s Northeast Corridor. Advanced geotechnical instrumentation was used to monitor transient deformations within individual track substructure layers before and after stone blowing. Moreover, tie support conditions and track geometry data were also analyzed to quantify the effectiveness of stone blowing on the improvement of track performance

    Deformation and Dynamic Load Amplification Trends at Railroad Bridge Approaches: Effects Caused by High-Speed Passenger Trains

    No full text
    Railroad track transitions such as bridge approaches may experience differential movements due to variations in track stiffness; impact loads due to train speed and excessive vibration; ballast settlement from fouling, degradation, or both; tie–ballast contact condition and gap; and settlement of fill, subgrade, and foundation layers. A research study completed recently at the University of Illinois focused on identifying the major causes of this differential movement and implementing suitable rehabilitation measures to mitigate recurrent problems with settlement and geometry. Transient and permanent deformation trends were observed in track substructure layers at two instrumented bridge approaches along the Amtrak Northeast Corridor. Multidepth deflectometer systems installed through crossties successfully recorded both permanent (plastic) and transient deformations of individual track substructure layers. Strain gauges mounted on the rail effectively measured vertical wheel loads applied during train passage and monitored the support conditions under the instrumented crossties. Track settlement (or permanent deformation) data revealed that the ballast layer was the primary source of differential movement contributing to recurrent settlement and geometry problems. Transient layer deformations recorded under train passage were higher in the ballast than in any other substructure layer. Transient displacement and wheel load data were consistently higher at near-bridge locations than at open-track locations. Rail-mounted strain gauges indicated that load amplification levels were significantly higher at near-bridge locations than at open-track locations
    corecore