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ABSTRACT 

 

A Federal Railroad Administration sponsored research project has been ongoing to 

explore the use of Fractal Analysis of track geometry data for indication of track geometry 

roughness, maintenance planning and track substructure condition assessment.  Fractal 

analysis provides unique numerical values (fractal dimensions) that characterize railway track 

geometry patterns.  The fractal dimensions can be used for effective maintenance planning by 

providing meaningful parameters for geometry deterioration modeling, and by potentially 

providing information about the actual condition of the track by precise quantification of the 

geometry patterns.  The paper will present a lucid discussion of fractal theory and will 

demonstrate its usefulness for quantifying railroad geometry data by highlighting key aspects 

of the research results.  This paper also discusses the relationship between track structure 

conditions and fractal dimensions for use in maintenance planning and condition evaluation. 

 

 



 

 

INTRODUCTION 
 
Fractal analysis is used to characterize irregular patterns and to quantify patterns that are 

seemingly chaotic and random (1).  The fractal dimension of a pattern varies depending 

on the degree of "roughness" of the pattern, and will have a different value for each 

pattern type, with the fractal dimension being specific for that pattern (2).  Railway track 

geometry exhibits irregular and rough characteristics.  Therefore, fractal analysis can be 

used to precisely characterize track geometry data and provide unique numerical values 

that can quantify geometry signatures. 

This paper presents results of a study conducted to explore the use of fractal 

analysis of track geometry data for an indication of track geometry condition, 

maintenance planning and evaluation of problem cause.  The paper focuses on vertical 

profile geometry since it is the parameter that is related to the track substructure 

condition. 

 
FRACTAL ANALYSIS 
 
Classical geometry holds that patterns are described by integer, whole-number 

dimensions.  For example, curves are one-dimensional, surfaces are two-dimensional, and 

cubes are three-dimensional.  However, patterns can actually occupy space between these 

discrete integer values, and therefore the patterns need to be described by a fraction of a 

dimension.  For example, a one-dimensional curve that is extremely rough, so rough that 

it is convoluted at even high levels of magnification, can actually fill the space in which it 

resides, thus being two-dimensional.  Fractal dimensions are those “fractional” 

dimensions that reside between conventional whole-number dimensions. 



 

Fractal analysis, i.e., the process used to determine the fractal dimension, was 

presented by Benoit B. Mandelbrot (1, 3) to characterize those patterns within nature that 

are irregular, chaotic or fragmented, and cannot be effectively quantified using classical 

geometry of whole-number dimensions (3).  There are various techniques for determining 

the fractal dimension of rough patterns, including the divider, area-perimeter and box 

methods (1, 2, 4), as well as the parallel-line (5), power spectral density (4, 6) and 

distribution methods (7).  The divider method will be discussed in this paper. 

The divider method is based on the empirical studies of coastlines, and was used by 

Mandelbrot to quantify curves whose fractal dimensions were greater than one ( > 1.0).  

The divider method is based on an equation that expresses the length of a rough line by: 

 L(λ) = nλ1-D
R   , [Eq. 1] 

 
where:   λ = length of unit measurement, 

L(λ) = length of the rough line based on unit measurement length λ, 

n = number of steps of length λ , and 

DR = fractal dimension of the rough line. 

To better understand Equation 1 consider the measurement of the coastline of 

Britain.  In order to determine the length, a progression of ruler lengths, λ, is used to trace 

the coast, as shown on Figure 1.  The length of the coastline measured by each ruler 

length, designated L(λ), can be calculated by simply multiplying the number of ruler 

lengths, n, by the length of the ruler, i.e., 

 L(λ)  =  n λ   . [Eq. 2] 

 



 

Ultimately, the true length is measured when the length of the ruler is shorter than 

the smallest detail of the coastline, resulting in a perfect trace of Britain.  At first glance, 

this method seems logical.  For instance, Figure 1.d certainly appears to “fit” the details 

of the coastline much more closely than Figure 1.a.  Eventually, this technique would 

seem to lead to the actual length.  A closer look, however, indicates that the ruler length 

in Figure 1.d appears to miss the details of the coastline, as apparent in Figure 1.e.  At 

every level of magnification, the coastline continues to present more detail.  The length , 

L(λ), measured by a mile-long ruler, λ, would be less than the length measured by a 

yardstick, which would be less than the length measured by a one-inch ruler.  It could be 

argued that the length of the coastline increases without limit as the ruler length 

decreases. 

Empirical work with the measurement of several coastlines provided an equation 

that described the constant increase in measured length as the ruler length decreased:  

 L(λ) ~ Nλ1-D  , [Eq. 3] 

where:   L(λ) = length of the coastline with respect to ruler length λ , 

N = number of ruler lengths used to measure the coast, and 

D = an empirical constant. 

Mandelbrot asserted that the exponent D in Equation 3 quantified the rate at 

which the length of the measured line increases with decreasing length of measuring 

ruler, and that this D was directly related to the particular “roughness” of the pattern 

being measured.  Equation 3 thus became Equation 1. 

To better understand how to quantify a pattern using the divider method consider 

a rough line that is measured using a “divider” or “ruler” of length, λ, as illustrated in 

FIGURE 2.  The rough line in FIGURE 2 is measured by placing the ends of the ruler on 



 

consecutive points of intersection along the line.  As the line is measured with smaller 

rulers (top down in FIGURE 2) the measured Total Length, L(λ), increases since the 

smaller rulers have the ability to intersect more points on the line and hence better 

approximate the actual length.  Once the pattern has been measured in such a way, 

Equation 1 can be used to develop the fractal dimension, DR , by first taking the 

logarithm (base 10) of both sides of Equation 1, which gives: 

 logL(λ) = (1-DR)log λ + log n  . [Eq. 4] 

This is in the form of the equation of a line, i.e., 

 y = mx + b  . [Eq. 5] 

Therefore, a plot of λ versus L(λ) on a log-log scale (FIGURE 3) yields a linear 

relationship with the slope of the line defined as: 

 m = 1 - DR   . [Eq. 6] 

Thus, the fractal dimension equals: 

 DR = 1 - m   . [Eq. 7] 

The fractal dimension is therefore determined from the slope of logL(λ) versus 

logλ plot, as shown on the bottom plot in FIGURE 2.  If the arbitrarily rough line in the 

top plot of FIGURE 2 was smoother than that shown, the difference in consecutive 

measured line lengths would not be as great, and the slope of the best-fit line through the 

data points on the fractal log-log plot would be less.  This would then result in DR being 

between 1.0 and 1.149. 



 

 
Fractal Analysis of Railway Track Geometry Data 
 
FIGURE 3 presents a typical profile deviation pattern and the method used to employ the 

divider method.  The divider method algorithm shown on FIGURE 3 uses constant step 

lengths along the x-axis (2, 4).  As the x-axis increment value approaches the minimum 

discrete unit size, and the length of the measured line increases, an increasingly better 

portrayal of the pattern emerges. 

FIGURE 4 presents the fractal plot that results from using the fractal 

dimensioning method illustrated in FIGURE 3.  This fractal plot is typical of MCO 

profile data in that the deviation measurements along a length of track often exhibit bi-

fractal aspects.  The bi-fractal aspect is apparent as the two distinct linear portions of the 

data.  This plot shows that the relationship between the step-length values and the 

corresponding measured length is different for the relatively large step-length values and 

the small step-length values.  The length of the pattern measured by the large step-length 

values is influenced by the overall shape of the pattern, whereas the length measured by 

the small step-length values is predominantly influenced by the texture of the pattern.  

Therefore, depending upon the size of the step-length values used, different aspects or 

“scales” of the pattern either become apparent or no longer visible.  FIGURE 4 shows 

that the large-scale (1st order) roughness associated with the relatively large step-length 

values (right linear relationship) is less than the smaller-scale (2nd order) roughness 

associated with the smaller step length values (left linear relationship). 

To further illustrate the idea of different “scales” or “orders” of roughness in the 

data, FIGURE 5 presents continuous geometry MCO data in which two different orders 

of magnitude are shown.  The 1st order roughness is associated with the overall shape of 



 

the line and the 2nd order roughness is associated with the texture of the line.  The divider 

method applied to the pattern in FIGURE 5 would result in a bi-fractal plot similar to that 

in FIGURE 4. 

The slope of the two linear portions of the plot, i.e., the fractal dimensions, as well 

as the location of the fractal breakpoint provides numerical parameters for 

characterization of the roughness of the pattern.  The 1st order and 2nd order fractal 

dimensions (DR1 and DR2) provide two numerical parameters to describe the geometry 

pattern.  The DR1 quantifies the roughness at a relatively large scale, and the DR2 provides 

a descriptor of relatively small scale roughness.  The fractal breakpoint value, expressed 

as a step-length value (in units of length), indicates the point of separation between the 

relatively small and large scale.  These numerical parameters can help derive correlations 

between geometry measurements and track condition.  Figure 6 presents four examples of 

vertical profile MCO data with corresponding fractal plots to illustrate how the fractal 

plots vary depending on the roughness of the pattern. 

 
 TRACK CONDITION EVALUATION 

 
Fractal analysis has been applied to railway track geometry data in order to examine its 

use for indication of track geometry condition, maintenance planning and evaluation of 

the cause of substructure related problems.  The fractal analysis was performed on 

vertical profile MCO data obtained by a high-speed inertial-based geometry recording 

car.  Mid-chord offset data reflect an unequal emphasis of different wavelengths resulting 

in MCO distortion by both amplification and attenuation.  The vertical profile data was 

analyzed in MCO format under the supposition that the MCO data, like the actual vertical 

space curve, reflects the track substructure condition despite the amplitude distortion.  



 

The focus of the research was on vertical profile measurement since these are the 

parameters most influenced by the track substructure conditions and indicative of the 

cause of track condition deterioration.  The fractal analysis of track geometry data was 

performed in this study in both discrete section analysis and in a moving-window fashion. 

 
Indication of Roughness 
 
Rough track geometry adversely affects the performance and longevity of track 

components and rolling stock, and causes passenger discomfort and an increased 

potential for derailments.  It is for these reasons that quantifiers or “indicators” of the 

degree of roughness associated with track geometry are important.  Fractal analysis 

provides good indicators of roughness in that it provides numerical values directly related 

to the roughness of the geometry signature.  Fractal dimensions surpass other geometry 

data quantifiers, such as Running Roughness (8), since fractal dimensions account for the 

magnitude of the variations as well as their frequency structure. 

Running Roughness (8), R2, is a mean square statistical calculation that provides a 

magnitude analysis of the geometry measurements.  As such, large values of R2 are 

associated with large deviations, and small-scale roughness is not reflected in R2 values.  

The first-order fractal dimension (DR1) quantifies large-scale roughness, and as expected 

DR1 and R2 correlate well with each other. This close correlation is apparent in FIGURE 7, 

which shows the relationship between the first-order fractal dimension (DR1) and Running 

Roughness of geometry data for two different locations (Site A09 and A12) on Amtrak's 

Northeast Corridor.  There are two groupings of data in FIGURE 7 that show a direct 

relationship between R2 and DR1 .  However, the relationship is not the same for the two 

sets of data since each set of data shows the relationship between DR1 and R2 for different 



 

sections of track with different geometry patterns.  Since fractal dimensions are pattern 

based whereas Running Roughness is strictly magnitude-based, there is not a constant 

relationship between DR1 and R2.  The relationship between DR1 and R2 varies depending 

upon the pattern under scrutiny. 

Fractal analysis provides a means to directly compare the roughness 

characteristics of different lengths of track since fractal analysis provides a measurement 

of roughness that is independent of length.  This is not to say that a subsection of a larger 

section will have the same fractal dimensions, but that if two patterns of different lengths 

have different roughness characteristics, then their fractal dimensions will be different.  

Similarly, if two patterns of different length have similar patterns, their fractal 

dimensions will be equal.  In this respect, fractal dimensions provide an "intesitive" 

measurement of pattern roughness, in the sense that R2, for example, is an "extensitive" 

property, i.e., its magnitude depends on the length of the "window" used for calculation.  

To illustrate this, consider FIGURE 8. 

FIGURE 8 (top plot) presents an approximate 17,000 ft sample of vertical profile 

geometry data with three different section lengths outlined.  Sections A, B and C are 

approximately 3000 ft, 9000 ft and 1500 ft in length, respectively.  Visually, Section B is 

less rough than both A and C, and A and C exhibit similar roughness characteristics.  

Fractal analysis was performed for each section (A, B & C).  Fractal log-log plots for the 

3 sections were developed and the results are shown in the bottom of FIGURE 8.  Review 

of FIGURE 8 indicates how Section B is considerably less rough than Sections A and C, 

and that Sections A and C have similar roughness characteristics.  Again, these results 



 

show that direct comparison of the roughness characteristics can be made for widely 

different lengths of track. 

The ability to directly compare different-length sections of track is useful for 

ranking and categorizing purposes, and is also useful for assessing "equivalent utility".  

Equivalent Utility refers to the determination of the dynamic response of certain pieces of 

equipment on a segment of track that has the same geometry characteristics as another 

segment on which the equipment performed satisfactorily during testing.  Two sections of 

track will have equivalent utility if their roughness characteristics are similar with respect 

to dynamic ride performance.  That is, once a particular piece of equipment (e.g., a new 

high-speed train-set) has qualified to run at a certain speed over a certain piece of track 

with a particular roughness condition, it can then be certified to run on other sections of 

like-roughness track without making a complete series of qualifying runs.  Sections of 

track with "like-roughness" with respect to train dynamics are said to have "equivalent 

utility". 

 
Planning 
 
By quantifying track geometry data with fractal analysis and developing the trends of 

fractal parameters over time, predictions can be made regarding the future condition of 

the track.  Maintenance and/or remedial measures, including allocation of capital 

resources, can then be planned based on these predictions.  Also, comparing fractal 

dimensions of geometry data for different sections of track can be used to rank the track 

sections for maintenance prioritization. 

FIGURE 9 presents an example of trend-analysis using fractal dimensions. This 

figure was developed by performing fractal analysis and running roughness (R2) 



 

calculations for vertical profile MCO data obtained over time for a discrete section of 

revenue service track.  Surfacing and undercutting maintenance input information is also 

shown on FIGURE 9. 

As shown in FIGURE 9, there is a clear reflection of the deterioration in geometry 

(increase in roughness) by DR1, DR2 and R2  between September 1994 and March 1995.  

During this time period no maintenance was performed.  Also apparent in FIGURE 9 is 

the improvement in geometry (decrease in roughness) due to maintenance intervention in 

August 1994, April 1995 and late June 1995.  The relationship between DR1 and R2 is 

consistent (note parallel trendlines of R2 and DR1) throughout the time period until 

September 1995 when undercutting of the track was performed and the geometry pattern 

was thereby changed. 

Fractal analysis of individual discrete sections of track is useful for section 

ranking and also for looking at the change of a section over time.  FIGURE 10 presents a 

one-mile section of running DR1 derived from the moving-window approach.  By aligning 

the running DR1 plots to a layout of track features the influence of track features such as 

undergrade bridges, turnouts (switches), signal locations and other physical features that 

can influence geometry measurements can be determined.  For instance, in FIGURE 10 it 

is known that the roughness occurring between Station 0 and Station 2250 ft is due to a 

long undergrade river bridge (UGBR).  The roughness from Station 2250 to Station 4550 

ft, on the other hand, is not associated with any track feature and is likely caused by the 

track substructure. 

To view and evaluate the behavior of the entire rough section over a period of 

time, a single fractal log-log plot was calculated for the entire 2300 ft dataset for each 



 

geometry measurement date that was taken during the time period of interest.  The results 

are plotted in the bottom of FIGURE 10, and this provides an indication of the geometry 

performance for the entire section of track.  The rate of deterioration for this section of 

track can be compared and prioritized with that of other track sections. 

The trends of DR1 shown on FIGURE 10 show that the vertical profile track 

geometry was relatively stable until November 1999 at which point it began to deteriorate 

until March 2000 when the track was smoothed by track surfacing.  DR2 similarly begins 

to deteriorate in November 1999.  The high DR2 degradation values of January through 

March 2000 are due to a high level of noise generated by a failing sensor on the geometry 

car.  The second-order fractal dimension is good at spotting the eminent failures before 

they show up in the calibration process. 

 
Evaluation 

 
Track geometry patterns are influenced by the track’s structural conditions.  In particular, 

vertical profile space curve and MCO measurements are influenced by the track’s 

substructure condition.  By meaningfully quantifying the vertical profile geometry pattern 

it should be possible to obtain useful information on the substructure condition of the 

track.  Fractal analysis provides precise numerical quantification of geometry patterns, 

and therefore has the potential to evaluate track substructure condition by characterizing 

the geometry signature. 

The functional condition of railway track, i.e. the loaded position of the rails, 

depends on both the unloaded profile and the elastic deflection of the track under load, 

and is directly indicated by the geometry data obtained by track geometry recording cars.  

The elastic deflection component of the geometry measurement is related to the structural 



 

behavior of railway track.  The structural behavior of railway track is defined by the 

strength and stiffness properties of the track superstructure (rail, fasteners, ties) and 

substructure (ballast, subballast, subgrade), as well as the dynamic load that the train 

traffic imparts to the track. 

To use geometry data to evaluate the structural condition of the track an 

understanding is required of the complex interrelationship between the load imparted by 

the track geometry car, the actual geometry car measurement (top of rail response), and 

the structural behavior of the track.  Understanding the contributions of the many 

variables is difficult, to say the least.  However, a new field of science called Chaos 

Theory describes a new way to examine such a complex system. 

Chaos theory is based on the concept that complex systems actually have a 

fundamentally simple structure or behavior and that the system can be understood by 

studying the "dynamical" behavior of the system.  The key to the science of chaos is its 

ability to account for every detail involved.  Rather than dismantle a system into its 

fundamental elements, the chaos perspective observes the behavior of the system as a 

whole (9). 

The approach taken in this study to examine the potential for fractal analysis of 

geometry data to evaluate track substructure condition relies on the fundamental 

assumption of chaos theory that a complex system can be understood by studying its 

"dynamical" behavior.  Therefore, the approach taken in this study uses fractal analysis to 

characterize the complex pattern of geometry data, which are a function of a complex 

interrelationship, to gain insight into the structural condition of the track.  This project 

has begun to explore the application of fractal analysis of geometry car data for 



 

substructure condition assessment.  This is being done by performing empirical studies to 

see if a correlation exists between the patterns that appear in the geometry car 

measurements and the condition of the substructure. 

A relatively common substructure problem is excessively fouled ballast.  Ballast 

with a large amount of fouling material will lose the ability to support the track and will 

tend to deform more under repeated loading.  Fouled ballast reduces the effectiveness of 

tamping by preventing ballast interlocking, and also results in high rates of differential 

settlement within the ballast.  Fouled ballast results in loss of elasticity and greater plastic 

deformation.  The amount of ballast fouling can vary along the track over short distances.  

This, combined with varying drainage and subgrade conditions, results in varying support 

of the ties over relatively short distances.  This translates into rough track.  Conceptually, 

the rough track that is caused by fouled ballast would be roughness of small scale since 

rapid variations in tie support would translate into a relatively high frequency.  Therefore, 

the difference in geometry pattern from a clean ballast section should be reflected in the 

DR2 measurement. 

To examine the DR2 response to different ballast fouling conditions, fractal 

analysis was performed on vertical profile geometry data for two different sections of 

track with excessively fouled ballast conditions.  The approximately 8 to 10 in. below the 

bottom of tie of the ballast layers of both of the sections of track were then cleaned with a 

high-production track ballast cleaner (track undercutter).  Figure 11 shows the vertical 

profile MCO data of a 3500 ft section of track before and after undercutting, and the 

fractal log-log plot for the entire 3500 ft section.  The large-scale roughness (DR1) does 

reduce from before to after undercutting likely due to the overall smoothing of the track.  



 

However, the small-scale roughness (DR2), which is hypothesized (but not yet proven) to 

be affected by the ballast condition, reduces dramatically from before to after 

undercutting. 

Furthermore, the geometry patterns used to develop FIGURE 9 reflect the 

excessively fouled ballast condition at that particular site (Site A12).  Undercutting and 

replacement of fouled ballast with clean ballast affected the geometry patterns as 

reflected in the change in DR1 and DR2 values.  The relationship between R2 and DR1, and 

the behavior of DR2, change significantly for sections of track with fouled ballast layers 

from before ballast cleaning to after; indicating the potential to determine the ballast 

fouling condition from the geometry car measurements. 

The effects of the track superstructure may also be seen in the geometry data.  To 

examine this effect, fractal analysis was performed on two different sections of Class 4 

mainline freight track and one section of Class 7 mainline track.  The Class 7 and 

"premium" Class 4 track were comprised of the premium track components: concrete ties, 

elastic fasteners, and high quality continuous welded rail (CWR).  The other 

"conventional" Class 4 mainline freight track was comprised of wood ties, cut-spike 

fasteners and CWR.  The substructure condition for all sections were relatively similar, 

i.e., good drainage, clean ballast layer, decent subgrade.  FIGURE 12 shows the results of 

fractal analysis on these three sections of track. 

The geometry of the premium Class 4 track is maintained to a much tighter 

tolerance than the conventional Class 4 track, which is the reason for the lower DR1 of the 

premium Class 4 track.  The DR1 of the Class 7 track is even lower due to the even tighter 

maintenance tolerances than both of the Class 4 tracks.  The DR2 of the two premium 



 

tracks (Class 4 and Class 7) are similar, and much lower than the conventional Class 4 

track.  This result suggests that DR2 reflects the condition of the track components (i.e., 

the ties, rails and fasteners). 

 

 CONCLUSIONS 
 
The following are major conclusions derived from the study thus far: 

A. Fractal analysis is a good indicator of the roughness of the geometry data and 

is able to provide unique numerical values that characterize railway track 

geometry patterns. 

B. Fractal dimensions vary depending upon the degree of pattern roughness 

within the track geometry, and can discern different orders (scales) of 

roughness within track geometry data. 

C. Fractal analysis is effective for comparing geometry between sections of track 

with different lengths since it provides numerical quantifiers that are 

independent of the length of the pattern being analyzed. 

D. Fractal analysis has been shown to be effective for maintenance planning by 

providing parameters directly related to geometry roughness that can be used 

for trend analysis (degradation modeling). 

E. Although the study of relationships between fractal parameters and track 

substructure condition was constrained by the limitations of available 

information, the fractal parameters show some indication of representing field 

trends.  There appears to be a correlation between the 2nd order fractal 

dimension (DR2) of vertical profile MCO data and the DR2 of continuous track 



 

stiffness measurements.  Also, there is some indication that fractal dimensions 

can discern track with fouled ballast conditions from those with clean ballast, 

and possible a distinction between poorly draining cuts and fill embankments.  

Field verification is essential to confirm or deny these preliminary findings. 
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Figure Captions 

FIGURE 1  Coastline of Britain. 

FIGURE 2  Example of divider fractal dimensioning technique and fractal log-log plot. 

FIGURE 3  Example of fractal dimensioning of geometry deviation pattern. 

FIGURE 4  Fractal plot of example pattern of FIGURE 3. 

FIGURE 5  Orders of roughness of geometry car deviation (MCO) data. 

FIGURE 6  Example patterns and fractal plots. 

FIGURE 7  Relationship between DR1 and R2 for Site A09 and A21. 

FIGURE 8  Example Fractal Analysis of different section lengths. 

FIGURE 9  Example trend analysis for Site A. 

FIGURE 10  Example Fractal Analysis of discrete section of track. 

FIGURE 11  Example of Fractal Analysis results for before and after undercutting. 

FIGURE 12  Comparison of premium and conventional track. 

 



 

 

 

FIGURE 1  Coastline of Britain. 
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FIGURE 2  Example of Divider fractal dimensioning technique and fratal log-log plot. 
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FIGURE 3  Example of fractal dimensioning of geometry deviation pattern. 

 



 

 

 

 

 

Increasing Step Length

In
cr

ea
si

n
g

 L
en

g
th

lo
g

log

m
1

m
2

Breakpoint

DR1 = 1 - m1

DR2 = 1 - m2

Rough

Rougher

 

 

FIGURE 4  Fractal plot of example pattern of FIGURE 3. 
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FIGURE 5  Orders of roughness of geometry car deviation (MCO) data. 
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FIGURE 6  Example patterns and fractal plots. 
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FIGURE 7  Relationship between DR1 and R2 for Site A09 and A21. 



 

 

 

 

 

FIGURE 8  Example Fractal Analysis of Different Section Lengths 
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FIGURE 9  Example trend analysis for Site A. 

 



 

 

FIGURE 10  Example Fractal Analysis of discrete section of track. 
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FIGURE 11  Example of fractal analysis results for before and after undercutting. 
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FIGURE 12  Comparison of Premium and Conventional track. 
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