1,357 research outputs found

    Technologies for aerobraking

    Get PDF
    Aerobraking is one of the largest contributors to making both lunar and Mars missions affordable. The use of aerobraking/aeroassist over all propulsive approaches saves as much as 60 percent of the initial mass required in low earth orbit (LEO); thus, the number and size of earth to orbit launch vehicles is reduced. Lunar transfer vehicles (LTV), which will be used to transport personnel and materials from LEO to lunar outpost, will aerobrake into earth's atmosphere at approximately 11 km/sec on return from the lunar surface. Current plans for both manned and robotic missions to Mars use aerocapture during arrival at Mars and at return to Earth. At Mars, the entry velocities will range from about 6 to 9.5 km/sec, and at Earth the return velocity will be about 12.5 to 14 km/sec. These entry velocities depend on trajectories, flight dates, and mission scenarios and bound the range of velocities required for the current studies. In order to successfully design aerobrakes to withstand the aerodynamic forces and heating associated with these entry velocities, as well as to make them efficient, several critical technologies must be developed. These are vehicle concepts and configurations, aerothermodynamics, thermal protection system materials, and guidance, navigation, and control systems. The status of each of these technologies are described, and what must be accomplished in each area to meet the requirements of the Space Exploration Initiative is outlined

    The Columbia Accident: Synopsis of CAIB Report Regarding the Physical Cause of the Accident and and Personal Thoughts

    Get PDF
    This seminar describes the process of determining the physical cause of The Shuttle Columbia Accident. The presentation is based on the published CIAB Report, and is based mainly on Appendix F2, Vol IV of the CIAB report by J. O. Arnold, H. E. Goldstein and D. J. Rigalli. As a part of the seminar, I would also indicate how my education in Engineering Physics at the University of Kansas helped prepare me to accept the assignment to serve as an investigator for the CAIB. A similar presentation was given at Purdue in 2005. Presentation charts are attached

    Cockpit Ocular Recording System (CORS)

    Get PDF
    The overall goal was the development of a Cockpit Ocular Recording System (CORS). Four tasks were used: (1) the development of the system; (2) the experimentation and improvement of the system; (3) demonstrations of the working system; and (4) system documentation. Overall, the prototype represents a workable and flexibly designed CORS system. For the most part, the hardware use for the prototype system is off-the-shelf. All of the following software was developed specifically: (1) setup software that the user specifies the cockpit configuration and identifies possible areas in which the pilot will look; (2) sensing software which integrates the 60 Hz data from the oculometer and heat orientation sensing unit; (3) processing software which applies a spatiotemporal filter to the lookpoint data to determine fixation/dwell positions; (4) data recording output routines; and (5) playback software which allows the user to retrieve and analyze the data. Several experiments were performed to verify the system accuracy and quantify system deficiencies. These tests resulted in recommendations for any future system that might be constructed

    Mechanical Testing of Carbon Based Woven Thermal Protection Materials

    Get PDF
    Three Dimensional Woven thermal protection system (TPS) materials are one of the enabling technologies for mechanically deployable hypersonic decelerator systems. These materials have been shown capable of serving a dual purpose as TPS and as structural load bearing members during entry and descent operations. In order to ensure successful structural performance, it is important to characterize the mechanical properties of these materials prior to and post exposure to entry-like heating conditions. This research focuses on the changes in load bearing capacity of woven TPS materials after being subjected to arcjet simulations of entry heating. Preliminary testing of arcjet tested materials [1] has shown a mechanical degradation. However, their residual strength is significantly more than the requirements for a mission to Venus [2]. A systematic investigation at the macro and microstructural scales is reported here to explore the potential causes of this degradation. The effects of heating on the sizing (an epoxy resin coating used to reduce friction and wear during fiber handling) are discussed as one of the possible causes for the decrease in mechanical properties. This investigation also provides valuable guidelines for margin policies for future mechanically deployable entry systems

    Structures and Mechanisms Design Concepts for Adaptive Deployable Entry Placement Technology

    Get PDF
    System studies have shown that large deployable aerodynamic decelerators such as the Adaptive Deployable Entry and Placement Technology (ADEPT) concept can revolutionize future robotic and human exploration missions involving atmospheric entry, descent and landing by significantly reducing the maximum heating rate, total heat load, and deceleration loads experienced by the spacecraft during entry [1-3]. ADEPT and the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) [4] share the approach of stowing the entry system in the shroud of the launch vehicle and deploying it to a much larger diameter prior to entry. The ADEPT concept provides a low ballistic coefficient for planetary entry by employing an umbrella-like deployable structure consisting of ribs, struts and a fabric cover that form an aerodynamic decelerator capable of undergoing hypersonic flight. The ADEPT "skin" is a 3-D woven carbon cloth that serves as a thermal protection system (TPS) and as a structural surface that transfers aerodynamic forces to the underlying ribs [5]. This paper focuses on design activities associated with integrating ADEPT components (cloth, ribs, struts and mechanisms) into a system that can function across all configurations and environments of a typical mission concept: stowed during launch, in-space deployment, entry, descent, parachute deployment and separation from the landing payload. The baseline structures and mechanisms were selected via trade studies conducted during the summer and fall of 2012. They are now being incorporated into the design of a ground test article (GTA) that will be fabricated in 2013. It will be used to evaluate retention of the stowed configuration in a launch environment, mechanism operation for release, deployment and locking, and static strength of the deployed decelerator. Of particular interest are the carbon cloth interfaces, underlying hot structure, (Advanced Carbon- Carbon ribs) and other structural components (nose cap, struts, and main body) designed to withstand the pressure and extremely high heating experienced during planetary entry

    Biological Records Centre Annual Report 2005-2006

    Get PDF
    The period covered by this report is the first year of a new six-year partnership between CEH and JNCC. For this period, there is increased emphasis on targeted survey, on analysis and interpretation and on communications and outreach. These activities were always part of BRC’s work, but they have been given greater prominence as a result of rapid developments in information technology. Data are increasingly reaching BRC in electronic form, so that the effort of data entry and collation is reduced. The data, collected by many volunteers and then collated and analysed at BRC, document the changing status and distribution of plants and animals in Britain. Distribution maps are published in atlases and are available via the internet through the NBN Gateway. The effects of change or loss of habitats, the influence of climate change and the consequences of changing water quality are all examples of the environmental factors that affect our biodiversity and which BRC aims to document and understand. The results are vital for developing environmental policies, to support conservation, and for fundamental ecological research. BRC is funded jointly by JNCC and NERC through a partnership based on a Memorandum of Agreement (MoA). The partnership started in 1973 when the Nature Conservancy was divided to form the successor bodies Nature Conservancy Council (NCC) and Institute of Terrestrial Ecology (ITE). NCC was in turn divided further to form JNCC and three Country Agencies, while ITE was merged with other NERC units to form CEH. Through all these changes, the partnership has been maintained. A six-year memorandum of agreement ended on 31 January 2005 (Hill et al. 2005). The present report covers the first full year, 2005-6, of the new agreement for 2005-2010. Rapid progress in information technology continues to be highly beneficial for BRC, whose data are increasingly used by the UK country conservation agencies, environmental consultants, NGOs, research workers, policy makers and volunteers. It is gratifying to know that, through our ability to display data on the National Biodiversity Network (NBN) Gateway, some of our data suppliers now have immediate access to their own data in a convenient form. The year 2005-6 has been one of steady progress, with new datasets added to BRC, substantial additions to existing data, and improved communication with the NBN Gateway. The most high profile activity of the year has been the Harlequin Ladybird Survey, which has enabled us to observe the early stages of colonization by a mobile insect in greater detail than has been possible in any previous case

    Arcjet Ablation of Stony and Iron Meteorites

    Get PDF
    A test campaign was conducted placing meteorites in the 60 MW plasma Arcjet Interaction Heating Facility at NASA Ames Research Center, with the aim to achieve flight-relevant conditions for asteroid impacts in Earth's atmosphere and to provide insight into how meteoritic materials respond to extreme entry heating environments. The test conditions at heat flux of 4000 W/m2 and 140 kPa stagnation pressure are comparable to those experienced by a 30-meter diameter asteroid moving at 20 km/s velocity at 65 km altitude in the Earth's atmosphere. Test objects were a stony type H5 ordinary chondrite (Tamdakht) and an iron type IAB-MG meteorite (Campo Del Cielo), and included the terrestrial analogs Dense Flood Basalt and Fused Silica. All samples were exposed for only a few seconds in the plasma stream. Significant melt flow and vaporization was observed for both the stony and iron meteorites during exposure. Mass loss from spallation of fragments was also observed. Vapor emitted atomic lines from alkali metals and iron, but did not emit the expected MgO molecular band emissions. The meteoritic melts flowed more rapidly, indicating lower viscosity, than those of Fused Silica. The surface recession was mapped. The effective heat of ablation derived from this showed that ablation under these conditions occurred in the melt-dominated regime. Ablation parameters have an effect on ground damage estimates. A bias in ablation parameters towards the melt-dominated regime would imply that impacting asteroids survive to lower altitude, and therefore could possibly have airbursts with a larger ground damage footprint

    NEQAIR96,Nonequilibrium and Equilibrium Radiative Transport and Spectra Program: User's Manual

    Get PDF
    This document is the User's Manual for a new version of the NEQAIR computer program, NEQAIR96. The program is a line-by-line and a line-of-sight code. It calculates the emission and absorption spectra for atomic and diatomic molecules and the transport of radiation through a nonuniform gas mixture to a surface. The program has been rewritten to make it easy to use, run faster, and include many run-time options that tailor a calculation to the user's requirements. The accuracy and capability have also been improved by including the rotational Hamiltonian matrix formalism for calculating rotational energy levels and Hoenl-London factors for dipole and spin-allowed singlet, doublet, triplet, and quartet transitions. Three sample cases are also included to help the user become familiar with the steps taken to produce a spectrum. A new user interface is included that uses check location, to select run-time options and to enter selected run data, making NEQAIR96 easier to use than the older versions of the code. The ease of its use and the speed of its algorithms make NEQAIR96 a valuable educational code as well as a practical spectroscopic prediction and diagnostic code

    Arcjet Testing of Woven Carbon Cloth for Use on Adaptive Deployable Entry Placement Technology

    Get PDF
    This paper describes arcjet testing and analysis that has successfully demonstrated the viability of three dimensional woven carbon cloth for dual use in the Adaptive Deployable Entry Placement Technology (ADEPT). ADEPT is an umbrella-like entry system that is folded for stowage in the launch vehicle s shroud and deployed in space prior to reaching the atmospheric interface. A key feature of the ADEPT concept is its lower ballistic coefficient for delivery of a given payload than those for conventional, rigid body entry systems. The benefits that accrue from the lower ballistic coefficient include factor of ten reductions of deceleration forces and entry heating. The former enables consideration of new classes of scientific instruments for solar system exploration while the latter enables the design of a more efficient thermal protection system. The carbon cloth now base lined for ADEPT has a dual use in that it serves as ADEPT s thermal protection system and as the "skin" that transfers aerodynamic deceleration loads to its umbrella-like substructure. The arcjet testing described in this paper was conducted for some of the higher heating conditions for a future Venus mission using the ADEPT concept, thereby showing that the carbon cloth can perform in a relevant entry environment. The ADEPT project considered the carbon cloth to be mission enabling and was carrying it as a major risk during Fiscal Year 2012. The testing and analysis reported here played a major role in retiring that risk and is highly significant to the success and possible adoption of ADEPT for future NASA missions. Finally, this paper also describes a preliminary engineering level code, based on the arcjet data, that can be used to estimate cloth thickness for future missions using ADEPT and to predict carbon cloth performance in future arcjet tests
    • …
    corecore