653 research outputs found

    Modulation of swimming in the gastropod Melibe leonina by nitric oxide

    Get PDF
    Nitric oxide (NO) is a gaseous intercellular messenger produced by the enzyme nitric oxide synthase. It has been implicated as a neuromodulator in several groups of animals, including gastropods, crustaceans and mammals. In this study, we investigated the effects of NO on the swim motor program produced by isolated brains and by semi-intact preparations of the nudibranch Melibe leonina. The NO donors sodium nitroprusside (SNP, 1 mmol l–1) and S-nitroso-N-acetylpenicillamine (SNAP, 1 mmol l–1) both had a marked effect on the swim motor program expressed in isolated brains, causing an increase in the period of the swim cycle and a more erratic swim rhythm. In semi-intact preparations, the effect of NO donors was manifested as a significant decrease in the rate of actual swimming. An NO scavenger, reduced oxyhemoglobin, eliminated the effects of NO donors on isolated brains, supporting the assumption that the changes in swimming induced by donors were actually due to NO. The cGMP analogue 8-bromoguanosine 3′,5′-cyclic monophosphate (1 mmol l–1) produced effects that mimicked those of NO donors, suggesting that NO is working via a cGMP-dependent mechanism. These results, in combination with previous histological studies indicating the endogenous presence of nitric oxide synthase, suggest that NO is used in the central nervous system of Melibe leonina to modulate swimming

    Homologous Neurons and their Locomotor Functions in Nudibranch Molluscs

    Get PDF
    These studies compare neurotransmitter localization and the behavioral functions of homologous neurons in nudibranch molluscs to determine the types of changes that might underlie the evolution of species-specific behaviors. Serotonin (5-HT) immunohistochemistry in eleven nudibranch species indicated that certain groups of 5 HT-immunoreactive neurons, such as the Cerebral Serotonergic Posterior (CeSP) cluster, are present in all species. However, the locations and numbers of many other 5 HT-immunoreactive neurons were variable. Thus, particular parts of the serotonergic system have changed during the evolution of nudibranchs. To test whether the functions of homologous neurons are phylogenetically variable, comparisons were made in species with divergent behaviors. In Tritonia diomedea, which crawls and also swims via dorsal-ventral body flexions, the CeSP cluster includes the Dorsal Swim Interneurons (DSIs). It was previously shown that the DSIs are members of the swim central pattern generator (CPG); they are rhythmically active during swimming and, along with their neurotransmitter 5-HT, are necessary and sufficient for swimming. It was also known that the DSIs excite efferent neurons used in crawling. DSI homologues, the CeSP-A neurons, were identified in six species that do not exhibit dorsal-ventral swimming. Many physiological characteristics, including excitation of putative crawling neurons were conserved, but the CeSP A neurons were not rhythmically active in any of the six species. In the lateral flexion swimmer, Melibe leonina, the CeSP-A neurons and 5-HT, were sufficient, but not necessary, for swimming. Thus, homologous neurons, and their neurotransmitter, have functionally diverged in species with different behaviors. Homologous neurons in species with similar behaviors also exhibited functional divergence. Like Melibe, Dendronotus iris is a lateral flexion swimmer. Swim interneuron 1 (Si1) is in the Melibe swim CPG. However, its putative homologue in Dendronotus, the Cerebral Posterior ipsilateral Pedal (CPiP) neuron, was not rhythmically active during swim-like motor patterns, but could initiate such a motor pattern. Together, these studies suggest that neurons have changed their functional relationships to neural circuits during the evolution of species-specific behaviors and have functionally diverged even in species that exhibit similar behaviors

    Neural Correlates of Swimming Behavior in Melibe leonina

    Get PDF
    The nudibranch Melibe leonina swims by rhythmically bending from side to side at a frequency of 1 cycle every 2–4 s. The objective of this study was to locate putative swim motoneurons (pSMNs) that drive these lateral flexions and determine if swimming in this species is produced by a swim central pattern generator (sCPG). In the first set of experiments, intracellular recordings were obtained from pSMNs in semi-intact, swimming animals. About 10–14 pSMNs were identified on the dorsal surface of each pedal ganglion and 4–7 on the ventral side. In general, the pSMNs in a given pedal ganglion fired synchronously and caused the animal to flex in that direction, whereas the pSMNs in the opposite pedal ganglion fired in anti-phase. When swimming stopped, so did rhythmic pSMN bursting; when swimming commenced, pSMNs resumed bursting. In the second series of experiments, intracellular recordings were obtained from pSMNs in isolated brains that spontaneously expressed the swim motor program. The pattern of activity recorded from pSMNs in isolated brains was very similar to the bursting pattern obtained from the same pSMNs in semi-intact animals, indicating that the sCPG can produce the swim rhythm in the absence of sensory feedback. Exposing the brain to light or cutting the pedal-pedal connectives inhibited fictive swimming in the isolated brain. The pSMNs do not appear to participate in the sCPG. Rather, they received rhythmic excitatory and inhibitory synaptic input from interneurons that probably comprise the sCPG circuit

    Detection of Salinity by the Lobster, Homarus americanus

    Get PDF
    Changes in the heart rates of lobsters (Homarus americanus) were used as an indicator that the animals were capable of sensing a reduction in the salinity of the ambient seawater. The typical response to a gradual (1 to 2 ppt/min) reduction in salinity consisted of a rapid increase in heart rate at a mean threshold of 26.6 ± 0.7 ppt, followed by a reduction in heart rate when the salinity reached 22.1 ± 0.5 ppt. Animals with lesioned cardioregulatory nerves did not exhibit a cardiac response to changes in salinity. A cardiac response was elicited from lobsters exposed to isotonic chloride-free salines but not to isotonic sodium-, magnesium- or calcium-free salines. There was little change in the blood osmolarity of lobsters when bradycardia occurred, suggesting that the receptors involved are external. Furthermore, lobsters without antennae, antennules, or legs showed typical cardiac responses to low salinity, indicating the receptors are not located in these areas. Lobsters exposed to reductions in the salinity of the ambient seawater while both branchial chambers were perfused with full-strength seawater did not display a cardiac response until the external salinity reached 21.6 ± 1.8 ppt. In contrast, when their branchial chambers were exposed to reductions in salinity while the external salinity was maintained at normal levels, changes in heart rate were rapidly elicited in response to very small reductions in salinity (down to 29.5 ± 0.9 ppt in the branchial chamber and 31.5 ± 0.3 ppt externally). We conclude that the primary receptors responsible for detecting reductions in salinity in H. americanus are located within or near the branchial chambers and are primarily sensitive to chloride ions

    Period Of Oscillation Of A Thyratron Circuit

    Get PDF

    Economic Recovery in the Canada-United States Relationship

    Get PDF

    Economic Recovery in the Canada-United States Relationship

    Get PDF

    Economic Recovery in the Canada-United States Relationship

    Get PDF
    • …
    corecore