19 research outputs found

    The Avian Germline and Strategies for the Production of Transgenic Chickens

    No full text
    Considerable interest exists in the development of transgenic poultry as a means of improving commercial poultry stocks and for applications in the pharmaceutical industry. The development of transgenic poultry requires stable insertion of genes into the germline. Because of the unique aspects of reproduction in birds, new methods of embryo manipulation had to be developed that include the ex ovo culture of embryos and the formation of germline chimeras using blastodermal cells and primordial germ cells. Currently, transgenic poultry can be produced using retroviral vectors and through the microinjection of DNA into the germinal disk of the newly fertilized egg. However, other approaches such as the development of embryonic stem cells, the culture of primordial germ cells, and sperm-mediated transfection are being explored for their potential to produce transgenic poultry

    Global Proteomic Analysis of Functional Compartments in Immature Avian Follicles Using Laser Microdissection Coupled to LC-MS/MS

    No full text
    Laser microdissection (LMD) was utilized for the separation of the yolk, follicular wall (granulosa and theca), and surrounding stromal cells of small white follicles (SWF) obtained from reproductively active domestic fowl. Herein, we provide an in situ proteomics-based approach to studying follicular development through the use of LMD and mass spectrometry. This study resulted in a total of 2889 proteins identified from the three specific isolated compartments. White yolk from the smallest avian follicles resulted in the identification of 1984 proteins, while isolated follicular wall and ovarian stroma yielded 2470 and 2456 proteins, respectively. GO annotations highlighted the functional differences between the compartments. Among the three compartments examined, the relative abundance of vitellogenins, steroidogenic enzymes, anti-Mullerian hormone, transcription factors, and proteins involved in retinoic acid receptors/retinoic acid synthesis, transcription factors, and cell surface receptors such as EGFR and their associated signaling pathways reflected known cellular function of the ovary. This study has provided a global proteome for SWF, white yolk, and ovarian stroma of the avian ovary that can be used as a baseline for future studies and verifies that the coupling of LMD with proteomic analysis can be used to evaluate proteins from small, physiologically functional compartments of complex tissue

    Skeletal Muscle and the Effects of Ammonia Toxicity in Fish, Mammalian, and Avian Species: A Comparative Review Based on Molecular Research

    No full text
    Typically, mammalian and avian models have been used to examine the effects of ammonia on skeletal muscle. Hyperammonemia causes sarcopenia or muscle wasting, in mammals and has been linked to sarcopenia in liver disease patients. Avian models of skeletal muscle have responded positively to hyperammonemia, differing from the mammalian response. Fish skeletal muscle has not been examined as extensively as mammalian and avian muscle. Fish skeletal muscle shares similarities with avian and mammalian muscle but has notable differences in growth, fiber distribution, and response to the environment. The wide array of body sizes and locomotion needs of fish also leads to greater diversity in muscle fiber distribution and growth between different fish species. The response of fish muscle to high levels of ammonia is important for aquaculture and quality food production but has not been extensively studied to date. Understanding the differences between fish, mammalian and avian species’ myogenic response to hyperammonemia could lead to new therapies for muscle wasting due to a greater understanding of the mechanisms behind skeletal muscle regulation and how ammonia effects these mechanisms. This paper provides an overview of fish skeletal muscle and ammonia excretion and toxicity in fish, as well as a comparison to avian and mammalian species

    A Novel Peptide Ameliorates LPS-Induced Intestinal Inflammation and Mucosal Barrier Damage via Its Antioxidant and Antiendotoxin Effects

    No full text
    Intestinal inflammation is an inflammatory disease resulting from immune dysregulation in the gut. It can increase the risk of enteric cancer, which is a common malignancy globally. As a new class of anti-inflammatory agents, native peptides have potential for use in the treatment of several intestinal inflammation conditions; however, their potential cytotoxicity and poor anti-inflammatory activity and stability have prevented their development. Hybridization has been proposed to overcome this problem. Thus, in this study, we designed a hybrid peptide (LL-37-TP5, LTP) by combing the active centre of LL-37 (13–36) with TP5. The half-life and cytotoxicity were tested in vitro, and the hybrid peptide showed a longer half-life and lower cytotoxicity than its parental peptides. We also detected the anti-inflammatory effects and mechanisms of LTP on Lipopolysaccharide (LPS)-induced intestinal inflammation in murine model. The results showed that LTP effectively prevented LPS-induced weight loss, impairment of intestinal tissues, leukocyte infiltration, and histological evidence of inflammation. Additionally, LTP decreased the levels of tumour necrosis factor-alpha, interferon-gamma, and interleukin-6; increased the expression of zonula occludens-1 and occludin; and reduced permeability in the jejunum of LPS-treated mice. Notably, LTP appeared to be more potent than the parental peptides LL-37 and TP5. The anti-inflammatory effects of LTP may be associated with the neutralization of LPS, inhibition of oxidative stress, and inhibition of the NF-κB signalling pathway. The findings of this study suggest that LTP might be an effective therapeutic agent for treating intestinal inflammation

    COVID-19 Pandemic Is a Call to Search for Alternative Protein Sources as Food and Feed: A Review of Possibilities

    No full text
    The coronavirus disease 2019 (COVID-19) pandemic is a global health challenge with substantial adverse effects on the world economy. It is beyond any doubt that it is, again, a call-to-action to minimize the risk of future zoonoses caused by emerging human pathogens. The primary response to contain zoonotic diseases is to call for more strict regulations on wildlife trade and hunting. This is because the origins of coronaviruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), as well as other viral pathogens (e.g., Ebola, HIV) are traceable to wild animals. Although COVID-19 is not related to livestock animals, the pandemic increased general attention given to zoonotic viral infections—the risk of which can also be associated with livestock. Therefore, this paper discusses the potential transformation of industrial livestock farming and the production of animal products, particularly meat, to decrease the risks for transmission of novel human pathogens. Plant-based diets have a number of advantages, but it is unrealistic to consider them as the only solution offered to the problem. Therefore, a search for alternative protein sources in insect-based foods and cultured meat, important technologies enabling safer meat production. Although both of these strategies offer a number of potential advantages, they are also subject to the number of challenges that are discussed in this paper. Importantly, insect-based foods and cultured meat can provide additional benefits in the context of ecological footprint, an aspect important in light of predicted climate changes. Furthermore, cultured meat can be regarded as ethically superior and supports better food security. There is a need to further support the implementation and expansion of all three approaches discussed in this paper, plant-based diets, insect-based foods, and cultured meat, to decrease the epidemiological risks and ensure a sustainable future. Furthermore, cultured meat also offers a number of additional benefits in the context of environmental impact, ethical issues, and food security
    corecore