147 research outputs found
Light-Triggered Myosin Activation for Probing Dynamic Cellular Processes
Shining light on myosin: The incorporation of a caging group onto the essential phosphoserine residue of myosin by protein semisynthesis enables light-triggered activation of the protein (see picture). Caging eliminates the myosin activity, but exposure to 365 nm light restores its function to native levels. The caged protein can also be introduced into cells to facilitate studies of myosin with precise spatial and temporal resolution.American Heart Association (Fellowship)National Institutes of Health (U.S.) (NIH Cell Migration Consortium (GM064346))National Institute of General Medical Sciences (U.S.) (Biotechnology Training Grant
Development of a Gene-Activated Scaffold Incorporating Multifunctional Cell-Penetrating Peptides for pSDF-1α Delivery for Enhanced Angiogenesis in Tissue Engineering Applications
Non-viral gene delivery has become a popular approach in tissue engineering, as it permits the transient delivery of a therapeutic gene, in order to stimulate tissue repair. However, the efficacy of non-viral delivery vectors remains an issue. Our lab has created gene-activated scaffolds by incorporating various non-viral delivery vectors, including the glycosaminoglycan-binding enhanced transduction (GET) peptide into collagen-based scaffolds with proven osteogenic potential. A modification to the GET peptide (FLR) by substitution of arginine residues with histidine (FLH) has been designed to enhance plasmid DNA (pDNA) delivery. In this study, we complexed pDNA with combinations of FLR and FLH peptides, termed GET* nanoparticles. We sought to enhance our gene-activated scaffold platform by incorporating GET* nanoparticles into collagen–nanohydroxyapatite scaffolds with proven osteogenic capacity. GET* N/P 8 was shown to be the most effective formulation for delivery to MSCs in 2D. Furthermore, GET* N/P 8 nanoparticles incorporated into collagen–nanohydroxyapatite (coll–nHA) scaffolds at a 1:1 ratio of collagen:nanohydroxyapatite was shown to be the optimal gene-activated scaffold. pDNA encoding stromal-derived factor 1α (pSDF-1α), an angiogenic chemokine which plays a role in BMP mediated differentiation of MSCs, was then delivered to MSCs using our optimised gene-activated scaffold platform, with the aim of significantly increasing angiogenesis as an important precursor to bone repair. The GET* N/P 8 coll–nHA scaffolds successfully delivered pSDF-1α to MSCs, resulting in a significant, sustained increase in SDF-1α protein production and an enhanced angiogenic effect, a key precursor in the early stages of bone repair
Boosting Wnt activity during colorectal cancer progression through selective hypermethylation of Wnt signaling antagonists.
BACKGROUND: There is emerging evidence that Wnt pathway activity may increase during the progression from colorectal adenoma to carcinoma and that this increase is potentially an important step towards the invasive stage. Here, we investigated whether epigenetic silencing of Wnt antagonists is the biological driver for this increased Wnt activity in human tissues and how these methylation changes correlate with MSI (Microsatelite Instability) and CIMP (CpG Island Methylator Phenotype) statuses as well as known mutations in genes driving colorectal neoplasia. METHODS: We conducted a systematic analysis by pyrosequencing, to determine the promoter methylation of CpG islands associated with 17 Wnt signaling component genes. Methylation levels were correlated with MSI and CIMP statuses and known mutations within the APC, BRAF and KRAS genes in 264 matched samples representing the progression from normal to pre-invasive adenoma to colorectal carcinoma. RESULTS: We discovered widespread hypermethylation of the Wnt antagonists SFRP1, SFRP2, SFRP5, DKK2, WIF1 and SOX17 in the transition from normal to adenoma with only the Wnt antagonists SFRP1, SFRP2, DKK2 and WIF1 showing further significant increase in methylation from adenoma to carcinoma. We show this to be accompanied by loss of expression of these Wnt antagonists, and by an increase in nuclear Wnt pathway activity. Mixed effects models revealed that mutations in APC, BRAF and KRAS occur at the transition from normal to adenoma stages whilst the hypermethylation of the Wnt antagonists continued to accumulate during the transitions from adenoma to carcinoma stages. CONCLUSION: Our study provides strong evidence for a correlation between progressive hypermethylation and silencing of several Wnt antagonists with stepping-up in Wnt pathway activity beyond the APC loss associated tumour-initiating Wnt signalling levels.A.L.S. was supported by the Fundacao para a Ciencia e Tecnologia (Portugal);
A.I. by a Clinician Scientist Fellowship from Cancer Research UK (grant no
C10112/A11388); M.B. by the Medical Research Council (U105192713) and by
Cancer Research UK (grant no C7379/A8709).This is the final published version. It first appeared at http://www.biomedcentral.com/1471-2407/14/891
Recommended from our members
Integrated Multi-Tumor Radio-Genomic Marker of Outcomes in Patients with High Serous Ovarian Carcinoma.
Purpose: Develop an integrated intra-site and inter-site radiomics-clinical-genomic marker of high grade serous ovarian cancer (HGSOC) outcomes and explore the biological basis of radiomics with respect to molecular signaling pathways and the tumor microenvironment (TME). Method: Seventy-five stage III-IV HGSOC patients from internal (N = 40) and external factors via the Cancer Imaging Archive (TCGA) (N = 35) with pre-operative contrast enhanced CT, attempted primary cytoreduction, at least two disease sites, and molecular analysis performed within TCGA were retrospectively analyzed. An intra-site and inter-site radiomics (cluDiss) measure was combined with clinical-genomic variables (iRCG) and compared against conventional (volume and number of sites) and average radiomics (N = 75) for prognosticating progression-free survival (PFS) and platinum resistance. Correlation with molecular signaling and TME derived using a single sample gene set enrichment that was measured. Results: The iRCG model had the best platinum resistance classification accuracy (AUROC of 0.78 [95% CI 0.77 to 0.80]). CluDiss was associated with PFS (HR 1.03 [95% CI: 1.01 to 1.05], p = 0.002), negatively correlated with Wnt signaling, and positively to immune TME. Conclusions: CluDiss and the iRCG prognosticated HGSOC outcomes better than conventional and average radiomic measures and could better stratify patient outcomes if validated on larger multi-center trials
Ovarian cancer cell line panel (OCCP): Clinical importance of in vitro morphological subtypes
Epithelial ovarian cancer is a highly heterogeneous disease and remains the most lethal gynaecological malignancy in the Western world. Therapeutic approaches need to account for inter-patient and intra-tumoural heterogeneity and detailed characterization of in vitro models representing the different histological a
Recommended from our members
Diffusion kurtosis MRI as a predictive biomarker of response to neoadjuvant chemotherapy in high grade serous ovarian cancer
Abstract: This study assessed the feasibility of using diffusion kurtosis imaging (DKI) as a measure of tissue heterogeneity and proliferation to predict the response of high grade serous ovarian cancer (HGSOC) to neoadjuvant chemotherapy (NACT). Seventeen patients with HGSOC were imaged at 3 T and had biopsy samples taken prior to any treatment. The patients were divided into two groups: responders and non-responders based on Response Evaluation Criteria In Solid Tumours (RECIST) criteria. The following imaging metrics were calculated: apparent diffusion coefficient (ADC), apparent diffusion (Dapp) and apparent kurtosis (Kapp). Tumour cellularity and proliferation were quantified using histology and Ki-67 immunohistochemistry. Mean Kapp before therapy was higher in responders compared to non-responders: 0.69 ± 0.13 versus 0.51 ± 0.11 respectively, P = 0.02. Tumour cellularity correlated positively with Kapp (rho = 0.50, P = 0.04) and negatively with both ADC (rho = −0.72, P = 0.001) and Dapp (rho = −0.80, P < 0.001). Ki-67 expression correlated with Kapp (rho = 0.53, P = 0.03) but not with ADC or Dapp. In conclusion, Kapp was found to be a potential predictive biomarker of NACT response in HGSOC, which suggests that DKI is a promising clinical tool for use oncology and radiology that should be evaluated further in future larger studies
A tumor DNA complex aberration index is an independent predictor of survival in breast and ovarian cancer
Complex focal chromosomal rearrangements in cancer genomes, also called "firestorms", can be scored from DNA copy number data. The complex arm-wise aberration index (CAAI) is a score that captures DNA copy number alterations that appear as focal complex events in tumors, and has potential prognostic value in breast cancer. This study aimed to validate this DNA-based prognostic index in breast cancer and test for the first time its potential prognostic value in ovarian cancer. Copy number alteration (CNA) data from 1950 breast carcinomas (METABRIC cohort) and 508 high-grade serous ovarian carcinomas (TCGA dataset) were analyzed. Cases were classified as CAAI positive if at least one complex focal event was scored. Complex alterations were frequently localized on chromosome 8p (n = 159), 17q (n = 176) and 11q (n = 251). CAAI events on 11q were most frequent in estrogen receptor positive (ER+) cases and on 17q in estrogen receptor negative (ER) cases. We found only a modest correlation between CAAI and the overall rate of genomic instability (GII) and number of breakpoints (r = 0.27 and r = 0.42, p <0.001). Breast cancer specific survival (BCSS), overall survival (OS) and ovarian cancer progression free survival (PUS) were used as clinical end points in Cox proportional hazard model survival analyses. CAAI positive breast cancers (43%) had higher mortality: hazard ratio (HR) of 1.94 (95%CI, 1.62-2.32) for BCSS, and of 1.49 (95%CI, 1.30-1.71) for OS. Representations of the 70-gene and the 21-gene predictors were compared with CAAI in multivariable models and CAAI was independently significant with a Cox adjusted HR of 1.56 (95%CI, 1.23-1.99) for ER+ and 1.55 (95%CI, 1.11-2.18) for ER disease. None of the expression-based predictors were prognostic in the ER subset. We found that a model including CAM and the two expression-based prognostic signatures outperformed a model including the 21-gene and 70-gene signatures but excluding CAAL Inclusion of CAAI in the clinical prognostication tool PREDICT significantly improved its performance. CAAI positive ovarian cancers (52%) also had worse prognosis: HRs of 1.3 (95%CI, 1.1-1.7) for PFS and 1.3 (95%CI, 1.1-1.6) for OS. This study validates CAM as an independent predictor of survival in both ER+ and ER breast cancer and reveals a significant prognostic value for CAAI in high-grade serous ovarian cancer. (C) 2014 The Authors. Published by Elsevier B.V. on behalf of Federation of European Biochemical Societies. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).Publisher PDFPeer reviewe
Enhanced detection of circulating tumor DNA by fragment size analysis.
Existing methods to improve detection of circulating tumor DNA (ctDNA) have focused on genomic alterations but have rarely considered the biological properties of plasma cell-free DNA (cfDNA). We hypothesized that differences in fragment lengths of circulating DNA could be exploited to enhance sensitivity for detecting the presence of ctDNA and for noninvasive genomic analysis of cancer. We surveyed ctDNA fragment sizes in 344 plasma samples from 200 patients with cancer using low-pass whole-genome sequencing (0.4×). To establish the size distribution of mutant ctDNA, tumor-guided personalized deep sequencing was performed in 19 patients. We detected enrichment of ctDNA in fragment sizes between 90 and 150 bp and developed methods for in vitro and in silico size selection of these fragments. Selecting fragments between 90 and 150 bp improved detection of tumor DNA, with more than twofold median enrichment in >95% of cases and more than fourfold enrichment in >10% of cases. Analysis of size-selected cfDNA identified clinically actionable mutations and copy number alterations that were otherwise not detected. Identification of plasma samples from patients with advanced cancer was improved by predictive models integrating fragment length and copy number analysis of cfDNA, with area under the curve (AUC) >0.99 compared to AUC 0.91 compared to AUC < 0.5 without fragmentation features. Fragment size analysis and selective sequencing of specific fragment sizes can boost ctDNA detection and could complement or provide an alternative to deeper sequencing of cfDNA.We would like to acknowledge the support of The University of Cambridge, Cancer Research UK and the EPSRC (CRUK grant numbers A11906 (NR), A20240 (NR), A22905 (JDB), A15601 (JDB), A25177 (CRUK Cancer Centre Cambridge), A17242 (KMB), A16465 (CRUK-EPSRC Imaging Centre in Cambridge and Manchester)). The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 337905. The research was supported by the National Institute for Health Research Cambridge, National Cancer Research Network, Cambridge Experimental Cancer Medicine Centre and Hutchison Whampoa Limited. This research is also supported by Target Ovarian Cancer and the Medical Research Council through their Joint Clinical Research Training Fellowship for Dr Moore. The CALIBRATE study was supported by funding from AstraZeneca
PTEN loss shapes macrophage dynamics in high grade serous ovarian carcinoma
High-grade serous ovarian carcinoma (HGSC) remains a disease of poor prognosis that is unresponsive to current immune checkpoint inhibitors. Although PI3K pathway alterations, such as PTEN loss, are common in HGSC, attempts to target this pathway have been unsuccessful. We hypothesized that aberrant PI3K pathway activation may alter the HGSC immune microenvironment and present a targeting opportunity. Single-cell RNA sequencing identified populations of resident macrophages specific to Pten-null omental tumors in murine models, which were confirmed by flow cytometry. These macrophages derived from peritoneal fluid macrophages and had a unique gene expression program, marked by high expression of the enzyme heme oxygenase-1 (HMOX1). Targeting resident peritoneal macrophages prevented the appearance of HMOX1hi macrophages and reduced tumor growth. Furthermore, direct inhibition of HMOX1 extended survival in vivo. RNA sequencing identified IL33 in Pten-null tumor cells as a likely candidate driver leading to the appearance of HMOX1hi macrophages. Human HGSC tumors also contained HMOX1hi macrophages with a corresponding gene expression program. Moreover, the presence of these macrophages correlated with activated tumoral PI3K/mTOR signaling and poor overall survival in HGSC patients. In contrast, tumors with low numbers of HMOX1hi macrophages were marked by increased adaptive immune response gene expression. These data suggest targeting HMOX1hi macrophages as a potential therapeutic strategy for treating poor prognosis HGSC
Refined cut-off for TP53 immunohistochemistry improves prediction of TP53 mutation status in ovarian mucinous tumors: implications for outcome analyses.
TP53 mutations are implicated in the progression of mucinous borderline tumors (MBOT) to mucinous ovarian carcinomas (MOC). Optimized immunohistochemistry (IHC) for TP53 has been established as a proxy for the TP53 mutation status in other ovarian tumor types. We aimed to confirm the ability of TP53 IHC to predict TP53 mutation status in ovarian mucinous tumors and to evaluate the association of TP53 mutation status with survival among patients with MBOT and MOC. Tumor tissue from an initial cohort of 113 women with MBOT/MOC was stained with optimized IHC for TP53 using tissue microarrays (75.2%) or full sections (24.8%) and interpreted using established criteria as normal or abnormal (overexpression, complete absence, or cytoplasmic). Cases were considered concordant if abnormal IHC staining predicted deleterious TP53 mutations. Discordant tissue microarray cases were re-evaluated on full sections and interpretational criteria were refined. The initial cohort was expanded to a total of 165 MBOT and 424 MOC for the examination of the association of survival with TP53 mutation status, assessed either by TP53 IHC and/or sequencing. Initially, 82/113 (72.6%) cases were concordant using the established criteria. Refined criteria for overexpression to account for intratumoral heterogeneity and terminal differentiation improved concordance to 93.8% (106/113). In the expanded cohort, 19.4% (32/165) of MBOT showed evidence for TP53 mutation and this was associated with a higher risk of recurrence, disease-specific death, and all-cause mortality (overall survival: HR = 4.6, 95% CI 1.5-14.3, p = 0.0087). Within MOC, 61.1% (259/424) harbored a TP53 mutation, but this was not associated with survival (overall survival, p = 0.77). TP53 IHC is an accurate proxy for TP53 mutation status with refined interpretation criteria accounting for intratumoral heterogeneity and terminal differentiation in ovarian mucinous tumors. TP53 mutation status is an important biomarker to identify MBOT with a higher risk of mortality.KLG is supported by the Victorian Cancer Agency (MCRF15013) and the Australian National Health and Medical Research Council (APP1045783 and #628434). This study was supported by the Peter MacCallum Cancer Foundation. CS is supported by a University of Melbourne Postgraduate Scholarship. DDB is supported by National Health and Medical Research Council of Australia (NHMRC) grants APP1092856 and APP1117044 and by the US National Cancer Institute U54 programme (U54CA209978-04). ELG and SHK are supported through P50 CA136393-10. The following cohorts that contributed to the GAMuT study were supported as follows: CASCADE: Supported by the Peter MacCallum Cancer Foundation AOCS: The Australian Ovarian Cancer Study Group was supported by the U.S. Army Medical Research and Materiel Command under DAMD17-01-1-0729, The Cancer Council Victoria, Queensland Cancer Fund, The Cancer Council New South Wales, The Cancer Council South Australia, The Cancer Council Tasmania and The Cancer Foundation of Western Australia (Multi-State Applications 191, 211 and 182) and the National Health and Medical Research Council of Australia (NHMRC; ID400413 and ID400281). The Australian Ovarian Cancer Study gratefully acknowledges additional support from Ovarian Cancer Australia and the Peter MacCallum Foundation. The AOCS also acknowledges the cooperation of the participating institutions in Australia and acknowledges the contribution of the study nurses, research assistants and all clinical and scientific collaborators to the study. The complete AOCS Study Group can be found at www.aocstudy.org. We would like to thank all of the women who participated in these research programs. OVCARE receives core funding from The BC Cancer Foundation and the VGH and UBC Hospital Foundation. The Gynaecological Oncology Biobank at Westmead is a member of the Australasian Biospecimen Network-Oncology group, which was funded by the National Health and Medical Research Council Enabling Grants ID 310670 & ID 628903 and the Cancer Institute NSW Grants ID 12/RIG/1-17 & 15/RIG/1-16. COEUR: This study uses resources provided by the Canadian Ovarian Cancer Research Consortium’s - COEUR biobank funded by the Terry Fox Research Institute and managed and supervised by the Centre hospitalier de l’Université de Montréal (CRCHUM). The Consortium acknowledges contributions to its COEUR biobank from Institutions across Canada (for a full list see http://www.tfri.ca/en/research/translational-research/coeur/coeur_biobanks.aspx). The following cohorts that contributed to OTTA were supported as follows: AOV: Canadian Institutes of Health Research (MOP-86727), Cancer Research Society (19319). BAV: ELAN Funds of the University of Erlangen-Nuremberg; DOV: NCI/NIH R01CA168758. Huntsman Cancer Foundation and the National Cancer Institute of the National Institutes of Health under Award Number P30CA042014. HAW: U.S. National 19 Institutes of Health (R01-CA58598, N01-CN-55424 and N01-PC-67001); MAY: National Institutes of Health (R01-CA122443, P30-CA15083, P50-CA136393); Mayo Foundation; Minnesota Ovarian Cancer Alliance; Fred C. and Katherine B. Andersen Foundation; SEA: SEARCH team: Mitul Shah, Jennifer Alsopp, Mercedes Jiminez-Linan SEARCH funding: Cancer Research UK (C490/A16561), the Cancer Research UK Cambridge Cancer Centre and the National Institute for Health Research Cambridge Biomedical Research Centres. The University of Cambridge has received salary support for PDPP from the NHS in the East of England through the Clinical Academic Reserve. JBD: Cancer Research UK Institute Group Award UK A22905 and A15601; STA: NIH grants U01 CA71966 and U01 CA69417; SWE: Swedish Cancer foundation, WeCanCureCancer and årKampMotCancer foundation; TVA: Canadian Institutes of Health Research grant (MOP-86727) and NIH/NCI 1 R01CA160669- 01A1; VAN: M.S. Anglesio is funded through a Michael Smith Foundation for Health Research Scholar Award and the Janet D. Cottrelle Foundation Scholars program managed by the BC Cancer Foundation. The Vancouver study cohort (TVAN) is supported by BC’s Ovarian Cancer Research team (OVCARE), the BC Cancer Foundation and The VGH+UBC Hospital Foundation. WMH: National Health and Medical Research Council of Australia, Enabling Grants ID 310670 & ID 628903. Cancer Institute NSW Grants 12/RIG/1-17 & 15/RIG/1-16
- …