62 research outputs found

    Two-stage phase II oncology designs using short-term endpoints for early stopping

    Get PDF
    Phase II oncology trials are conducted to evaluate whether the tumour activity of a new treatment is promising enough to warrant further investigation. The most commonly used approach in this context is a two-stage single-arm design with binary endpoint. As for all designs with interim analysis, its efficiency strongly depends on the relation between recruitment rate and follow-up time required to measure the patients’ outcomes. Usually, recruitment is postponed after the sample size of the first stage is achieved up until the outcomes of all patients are available. This may lead to a considerable increase of the trial length and with it to a delay in the drug development process. We propose a design where an intermediate endpoint is used in the interim analysis to decide whether or not the study is continued with a second stage. Optimal and minimax versions of this design are derived. The characteristics of the proposed design in terms of type I error rate, power, maximum and expected sample size as well as trial duration are investigated. Guidance is given on how to select the most appropriate design. Application is illustrated by a phase II oncology trial in patients with advanced angiosarcoma, which motivated this research

    A multi-stage drop-the-losers design for multi-arm clinical trials

    Get PDF
    Multi-arm multi-stage trials can improve the efficiency of the drug development process when multiple new treatments are available for testing. A group-sequential approach can be used in order to design multi-arm multi-stage trials, using an extension to Dunnett’s multiple-testing procedure. The actual sample size used in such a trial is a random variable that has high variability. This can cause problems when applying for funding as the cost will also be generally highly variable. This motivates a type of design that provides the efficiency advantages of a group-sequential multi-arm multi-stage design, but has a fixed sample size. One such design is the two-stage drop-the-losers design, in which a number of experimental treatments, and a control treatment, are assessed at a prescheduled interim analysis. The best-performing experimental treatment and the control treatment then continue to a second stage. In this paper, we discuss extending this design to have more than two stages, which is shown to considerably reduce the sample size required. We also compare the resulting sample size requirements to the sample size distribution of analogous group-sequential multi-arm multi-stage designs. The sample size required for a multi-stage drop-the-losers design is usually higher than, but close to, the median sample size of a group-sequential multi-arm multi-stage trial. In many practical scenarios, the disadvantage of a slight loss in average efficiency would be overcome by the huge advantage of a fixed sample size. We assess the impact of delay between recruitment and assessment as well as unknown variance on the drop-the-losers designs

    A review of Bayesian perspectives on sample size derivation for confirmatory trials

    Full text link
    Sample size derivation is a crucial element of the planning phase of any confirmatory trial. A sample size is typically derived based on constraints on the maximal acceptable type I error rate and a minimal desired power. Here, power depends on the unknown true effect size. In practice, power is typically calculated either for the smallest relevant effect size or a likely point alternative. The former might be problematic if the minimal relevant effect is close to the null, thus requiring an excessively large sample size. The latter is dubious since it does not account for the a priori uncertainty about the likely alternative effect size. A Bayesian perspective on the sample size derivation for a frequentist trial naturally emerges as a way of reconciling arguments about the relative a priori plausibility of alternative effect sizes with ideas based on the relevance of effect sizes. Many suggestions as to how such `hybrid' approaches could be implemented in practice have been put forward in the literature. However, key quantities such as assurance, probability of success, or expected power are often defined in subtly different ways in the literature. Starting from the traditional and entirely frequentist approach to sample size derivation, we derive consistent definitions for the most commonly used `hybrid' quantities and highlight connections, before discussing and demonstrating their use in the context of sample size derivation for clinical trials
    • …
    corecore