11 research outputs found

    CSF-1 maintains pathogenic but not homeostatic myeloid cells in the central nervous system during autoimmune neuroinflammation

    Get PDF
    SignificanceMultiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are autoimmune diseases characterized by accumulation of myeloid cells in the central nervous system (CNS). Both harmful and beneficial myeloid cells are present in EAE/MS, and a goal of MS therapy is to preferentially remove harmful myeloid cells. The receptor for CSF-1 (CSF-1R) is found on myeloid cells and is important for their survival. CSF-1R can bind two ligands, CSF-1 and IL-34, but it is not known whether their functions in EAE/MS differ. We found that blocking CSF-1 depleted only harmful myeloid cells in the CNS and suppressed EAE, whereas blocking IL-34 had no effect. Thus, we propose that blocking CSF-1 could be a therapy for MS

    IL-11 Induces NLRP3 Inflammasome Activation in Monocytes and Inflammatory Cell Migration to the Central Nervous System

    Get PDF
    The objective of this study is to examine IL-11-induced mechanisms of inflammatory cell migration to the central nervous system (CNS). We report that IL-11 is produced at highest frequency by myeloid cells among the peripheral blood mononuclear cell (PBMC) subsets. Patients with relapsing-remitting multiple sclerosis (RRMS) have an increased frequency of IL-11+ monocytes, IL-11+ and IL-11R+ CD4+ lymphocytes, and IL-11R+ neutrophils in comparison to matched healthy controls. IL-11+ and granulocyte-macrophage colony-stimulating factor (GM-CSF)+ monocytes, CD4+ lymphocytes, and neutrophils accumulate in the cerebrospinal fluid (CSF). The effect of IL-11 in-vitro stimulation, examined using single-cell RNA sequencing, revealed the highest number of differentially expressed genes in classical monocytes, including up-regulated NFKB1, NLRP3, and IL1B. All CD4+ cell subsets had increased expression of S100A8/9 alarmin genes involved in NLRP3 inflammasome activation. In IL-11R+-sorted cells from the CSF, classical and intermediate monocytes significantly up-regulated the expression of multiple NLRP3 inflammasome-related genes, including complement, IL18, and migratory genes (VEGFA/B) in comparison to blood-derived cells. Therapeutic targeting of this pathway with αIL-11 mAb in mice with RR experimental autoimmune encephalomyelitis (EAE) decreased clinical scores, CNS inflammatory infiltrates, and demyelination. αIL-11 mAb treatment decreased the numbers of NFκBp65+, NLRP3+, and IL-1β+ monocytes in the CNS of mice with EAE. The results suggest that IL-11/IL-11R signaling in monocytes represents a therapeutic target in RRMS

    Design and implementation of the international genetics and translational research in transplantation network

    Get PDF

    Concept and design of a genome-wide association genotyping array tailored for transplantation-specific studies

    Get PDF
    Background: In addition to HLA genetic incompatibility, non-HLA difference between donor and recipients of transplantation leading to allograft rejection are now becoming evident. We aimed to create a unique genome-wide platform to facilitate genomic research studies in transplant-related studies. We designed a genome-wide genotyping tool based on the most recent human genomic reference datasets, and included customization for known and potentially relevant metabolic and pharmacological loci relevant to transplantation. Methods: We describe here the design and implementation of a customized genome-wide genotyping array, the ‘TxArray’, comprising approximately 782,000 markers with tailored content for deeper capture of variants across HLA, KIR, pharmacogenomic, and metabolic loci important in transplantation. To test concordance and genotyping quality, we genotyped 85 HapMap samples on the array, including eight trios. Results: We show low Mendelian error rates and high concordance rates for HapMap samples (average parent-parent-child heritability of 0.997, and concordance of 0.996). We performed genotype imputation across autosomal regions, masking directly genotyped SNPs to assess imputation accuracy and report an accuracy of >0.962 for directly genotyped SNPs. We demonstrate much higher capture of the natural killer cell immunoglobulin-like receptor (KIR) region versus comparable platforms. Overall, we show that the genotyping quality and coverage of the TxArray is very high when compared to reference samples and to other genome-wide genotyping platforms. Conclusions: We have designed a comprehensive genome-wide genotyping tool which enables accurate association testing and imputation of ungenotyped SNPs, facilitating powerful and cost-effective large-scale genotyping of transplant-related studies. Electronic supplementary material The online version of this article (doi:10.1186/s13073-015-0211-x) contains supplementary material, which is available to authorized users

    Concept and design of a genome-wide association genotyping array tailored for transplantation-specific studies

    Full text link

    Single Cell Transcriptome Analysis of Peripheral Blood Mononuclear Cells in Freshly Isolated versus Stored Blood Samples

    No full text
    Background: Peripheral blood mononuclear cells (PBMCs) are widely used as a model in the study of different human diseases. There is often a time delay from blood collection to PBMC isolation during the sampling process, which can result in an experimental bias, particularly when performing single cell RNA-seq (scRNAseq) studies. Methods: This study examined the impact of different time periods from blood draw to PBMC isolation on the subsequent transcriptome profiling of different cell types in PBMCs by scRNAseq using the 10X Chromium Single Cell Gene Expression assay. Results: Examining the five major cell types constituting the PBMC cell population, i.e., CD4+ T cells, CD8+ T cells, NK cells, monocytes, and B cells, both common changes and cell-type-specific changes were observed in the single cell transcriptome profiling over time. In particular, the upregulation of genes regulated by NF-kB in response to TNF was observed in all five cell types. Significant changes in key genes involved in AP-1 signaling were also observed. RBC contamination was a major issue in stored blood, whereas RBC adherence had no direct impact on the cell transcriptome. Conclusions: Significant transcriptome changes were observed across different PBMC cell types as a factor of time from blood draw to PBMC isolation and as a consequence of blood storage. This should be kept in mind when interpreting experimental results

    Constrained chromatin accessibility in PU.1-mutated agammaglobulinemia patients.

    No full text
    The pioneer transcription factor (TF) PU.1 controls hematopoietic cell fate by decompacting stem cell heterochromatin and allowing nonpioneer TFs to enter otherwise inaccessible genomic sites. PU.1 deficiency fatally arrests lymphopoiesis and myelopoiesis in mice, but human congenital PU.1 disorders have not previously been described. We studied six unrelated agammaglobulinemic patients, each harboring a heterozygous mutation (four de novo, two unphased) of SPI1, the gene encoding PU.1. Affected patients lacked circulating B cells and possessed few conventional dendritic cells. Introducing disease-similar SPI1 mutations into human hematopoietic stem and progenitor cells impaired early in vitro B cell and myeloid cell differentiation. Patient SPI1 mutations encoded destabilized PU.1 proteins unable to nuclear localize or bind target DNA. In PU.1-haploinsufficient pro-B cell lines, euchromatin was less accessible to nonpioneer TFs critical for B cell development, and gene expression patterns associated with the pro- to pre-B cell transition were undermined. Our findings molecularly describe a novel form of agammaglobulinemia and underscore PU.1's critical, dose-dependent role as a hematopoietic euchromatin gatekeeper

    Design and Implementation of the International Genetics and Translational Research in Transplantation Network

    Get PDF
    Background. Genetic association studies of transplantation outcomes have been hampered by small samples and highly complex multifactorial phenotypes, hindering investigations of the genetic architecture of a range of comorbidities which significantly impact graft and recipient life expectancy. We describe here the rationale and design of the International Genetics & Translational Research in Transplantation Network. The network comprises 22 studies to date, including 16 494 transplant recipients and 11 669 donors, of whom more than 5000 are of non-European ancestry, all of whom have existing genomewide genotype data sets. Methods. We describe the rich genetic and phenotypic information available in this consortium comprising heart, kidney, liver, and lung transplant cohorts. Results. We demonstrate significant power in International Genetics & Translational Research in Transplantation Network to detect main effect association signals across regions such as the MHC region as well as genomewide for transplant outcomes that span all solid organs, such as graft survival, acute rejection, new onset of diabetes after transplantation, and for delayed graft function in kidney only. Conclusions. This consortium is designed and statistically powered to deliver pioneering insights into the genetic architecture of transplant-related outcomes across a range of different solid-organ transplant studies. The study design allows a spectrum of analyses to be performed including recipient-only analyses, donor-recipient HLA mismatches with focus on loss-of-function variants and nonsynonymous single nucleotide polymorphisms
    corecore