1,048 research outputs found

    A New Pseudopolymorph of Hexakis-(4-cynaophenyl)benzene

    Get PDF
    The title compound (systematic name: benzene-4,4′,4′′,4′′′,-4′′′′,4′′′′′-hexaylhexabenzonitrile dichloromethane disolvate), C48H24N6•2CH2Cl2, crystallizes as an inclusion compound during the slow diffusion of methanol into a solution of hexakis(4-cyanophenyl)benzene in CH2Cl2. The hexakis(4- cyanophenyl)benzene molecule lies on an axis of twofold rotation in the space group Pbcn. Weak C—H•••N interactions between hexakis(4-cyanophenyl)benzene molecules define an open network with space for including guests. The resulting structure is a new pseudopolymorph of hexakis-(4-cyanophenyl)benzene. The eight known pseudopolymorphs have few shared architectural features, in part because none of the intermolecular interactions that are present plays a dominant role or forces neighboring molecules to assume particular relative orientations

    Crystalline Metal-Organic Frameworks Based on Conformationally Flexible Phosphonic Acids

    Get PDF
    The goal of the work described in this dissertation was to investigate the structure of metal phosphonate frameworks which were composed of conforma-tionally flexible ligands. This goal was achieved through investigating new syn-thetic techniques, systematically changing structural aspects (i.e. chain length), and conducting in situ X-ray diffraction experiments under non-ambient condi-tions. First, the use of ionic liquids in the synthesis of metal phosphonates was in-vestigated. Reaction systems which had previously been studied in purely aqueous synthetic media were reinvestigated with the addition of a hydrophobic ionic liq-uid to the reaction. Second, the structural diversity of zinc alkylbisphosphonates was investigated through systematically varying the chain length and reaction conditions. Last, the structural changes associated with externally applied stimuli (namely temperature and pressure) on conformationally flexible metal phospho-nates were investigated. Elevated temperature was used to investigate the structur-al changes of a 1-D cobalt chain compound through three stages of dehydration and also applied pressures of up to 10 GPa were used to probe the structural resili-ence of two zinc alkylbisphosphonate materials under. The iminobis(methylphosphonic acid) type ligands are a good example of a small, simple, conformationally flexible ligand. There are three distinct different structural types, utilizing this ligand with cobalt metal, described in the literature, all of which contain bound or solvated water molecules. The addition of a hydrophobic ionic liquid to an aqueous synthesis medium resulted in new anhydrous compounds with unique structural features. Systematic investigations of zinc alkylbisphosphonate materials, construct-ed with three to six carbon linker ligands, resulted in four new families of com-pounds. Each of these families has unique structural features which may prove in-teresting in future applications developments. Importantly, it is shown that wheth-er the chain length is odd or even plays a role in structural type although it is not necessarily a requirement for a given structural type; furthermore, chain length itself is not strictly determinative of structural type. Dehydration in a cobalt phosphonate was followed via in situ single crystal X-ray diffraction. The compound goes through a two-stage dehydration mecha-nism in which the compound changes from a 1-D chain to a 2-D sheet. This pro-cess is reversible and shows unique switchable magnetic properties. The high pressure studies of an alkyl chain built zinc metal phosphonate showed that the chains provide a spring-like cushion to stabilize the compression of the system allowing for large distortions in the metal coordination environment, without destruction of the material. This intriguing observation raises questions as to whether or not these types of materials may play a role as a new class of piezo-functional solid-state materials

    Adding Student Voice to the Mix: Perception Surveys and State Accountability Systems

    Get PDF
    For the past two decades, student perception surveys have become standard tools in data collection efforts. At the state level, however, “student voice” is still used sparingly. In this study, we examine the ways in which including student survey results might alter state accountability determinations. Reconstructing the accountability system in Massachusetts, we draw on a unique set of student survey data, which we add to the state’s formula at a maximally feasible dosage in order to determine new school ratings. As we find, student survey data shift school accountability ratings in small but meaningful ways and appear to enhance functional validity. Student survey results introduce information about school quality that is not captured by typical accountability metrics, correlate moderately with test score growth, and are not predicted by student demographic variables

    Whatever happened to the interactive media revolution?

    Get PDF

    A 100-element HBT grid amplifier

    Get PDF
    A 100-element 10-GHz grid amplifier has been developed. The active devices in the grid are chips with heterojunction-bipolar-transistor (HBT) differential pairs. The metal grid pattern was empirically designed to provide effective coupling between the HBTs and free space. Two independent measurements, one with focusing lenses and the other without, were used to characterize the grid. In each case, the peak gain was 10 dB at 10 GHz with a 3-dB bandwidth of 1 GHz. The input and output return losses were better than 15 dB at 10 GHz. The maximum output power was 450 mW, and the minimum noise figure was 7 dB. By varying the bias, a signal could be amplitude modulated with a modulation index as large as 0.65. Tests show that the grid was quite tolerant of failures-the output power dropped by only 1 dB when 10% of the inputs were detuned. The grid amplifier is a multimode device that amplifies beams of different shapes and angles. Beams with incidence angles up to 30° were amplified with less than a 3-dB drop in gain

    Angular position of nodes in the superconducting gap of YBCO

    Full text link
    The thermal conductivity of a YBCO single crystal has been studied as a function of the relative orientation of the crystal axes and a magnetic field rotating in the Cu-O planes. Measurements were carried out at several temperatures below T_c and at a fixed field of 30 kOe. A four-fold symmetry characteristic of a superconducting gap with nodes at odd multiples of 45 degrees in k-space was resolved. Experiments were performed to exclude a possible macroscopic origin for such a four-fold symmetry such as sample shape or anisotropic pinning. Our results impose an upper limit of 10% on the weight of the s-wave component of the essentially d-wave superconducting order parameter of YBCO.Comment: 10 pages, 4 figure
    • …
    corecore