2 research outputs found

    Larger Error Signals in Major Depression are Associated with Better Avoidance Learning

    Get PDF
    The medial prefrontal cortex (mPFC) is particularly reactive to signals of error, punishment, and conflict in the service of behavioral adaptation and it is consistently implicated in the etiology of major depressive disorder (MDD). This association makes conceptual sense, given that MDD has been associated with hyper-reactivity in neural systems associated with punishment processing. Yet in practice, depression-related variance in measures of mPFC functioning often fails to relate to performance. For example, neuroelectric reflections of mediofrontal error signals are often found to be larger in MDD, but a deficit in post-error performance suggests that these error signals are not being used to rapidly adapt behavior. Thus, it remains unknown if depression-related variance in error signals reflects a meaningful alteration in the use of error or punishment information. However, larger mediofrontal error signals have also been related to another behavioral tendency: increased accuracy in avoidance learning. The integrity of this error-avoidance system remains untested in MDD. In this study, EEG was recorded as 21 symptomatic, drug-free participants with current or past MDD and 24 control participants performed a probabilistic reinforcement learning task. Depressed participants had larger mid-frontal EEG responses to error feedback than controls. The direct relationship between error signal amplitudes and avoidance learning accuracy was replicated. Crucially, this relationship was stronger in depressed participants for high conflict “lose–lose” situations, demonstrating a selective alteration of avoidance learning. This investigation provided evidence that larger error signal amplitudes in depression are associated with increased avoidance learning, identifying a candidate mechanistic model for hypersensitivity to negative outcomes in depression

    Individual differences in risky decision-making among seniors reflect increased reward sensitivity

    Get PDF
    Increasing age is associated with subtle but meaningful changes in decision-making. It is unknown, however, to what degree these psychological changes are reflective of age-related changes in decision quality. Here, we investigated the effect of age on latent cognitive processes associated with risky decision-making on the Balloon Analogue Risk Task (BART). In the BART, participants repetitively inflate a balloon in order to increase potential reward. At any point, participants can decide to cash out to harvest the reward, or they can continue, risking a balloon pop that erases all earnings. We found that among seniors, increasing age was associated with greater reward-related risk taking when the balloon has a higher probability of popping (i.e., a high risk condition). Cognitive modeling results from hierarchical Bayesian estimation suggested that performance differences were due to increased reward sensitivity in high risk conditions in seniors
    corecore