19 research outputs found

    Using ApoE Nanolipoprotein Particles To Analyze SNARE-Induced Fusion Pores

    No full text
    Here we introduce ApoE-based nanolipoprotein particle (NLP)a soluble, discoidal bilayer mimetic of ∼23 nm in diameter, as fusion partners to study the dynamics of fusion pores induced by SNARE proteins. Using <i>in vitro</i> lipid mixing and content release assays, we report that NLPs reconstituted with synaptic v-SNARE VAMP2 (vNLP) fuse with liposomes containing the cognate t-SNARE (Syntaxin1/SNAP25) partner, with the resulting fusion pore opening directly to the external buffer. Efflux of encapsulated fluorescent dextrans of different sizes show that unlike the smaller nanodiscs, these larger NLPs accommodate the expansion of the fusion pore to at least ∼9 nm, and dithionite quenching of fluorescent lipid introduced in vNLP confirms that the NLP fusion pores are short-lived and eventually reseal. The NLPs also have capacity to accommodate larger number of proteins and using vNLPs with defined number of VAMP2 protein, including physiologically relevant copy numbers, we find that 3–4 copies of VAMP2 (minimum 2 per face) are required to keep a nascent fusion pore open, and the SNARE proteins act cooperatively to dilate the nascent fusion pore

    A Half-Zippered SNARE Complex Represents a Functional Intermediate in Membrane Fusion

    No full text
    SNARE (soluble <i>N</i>-ethylmaleimide-sensitive factor attachment protein receptor) proteins mediate fusion by pulling biological membranes together via a zippering mechanism. Recent biophysical studies have shown that t- and v-SNAREs can assemble in multiple stages from the N-termini toward the C-termini. Here we show that functionally, membrane fusion requires a sequential, two-step folding pathway and assign specific and distinct functions for each step. First, the N-terminal domain (NTD) of the v-SNARE docks to the t-SNARE, which leads to a conformational rearrangement into an activated half-zippered SNARE complex. This partially assembled SNARE complex locks the C-terminal (CTD) portion of the t-SNARE into the same structure as in the postfusion 4-helix bundle, thereby creating the binding site for the CTD of the v-SNARE and enabling fusion. Then zippering of the remaining CTD, the membrane-proximal linker (LD), and transmembrane (TMD) domains is required and sufficient to trigger fusion. This intrinsic property of the SNAREs fits well with the action of physiologically vital regulators such as complexin. We also report that NTD assembly is the rate-limiting step. Our findings provide a refined framework for delineating the molecular mechanism of SNARE-mediated membrane fusion and action of regulatory proteins

    High-Throughput Monitoring of Single Vesicle Fusion Using Freestanding Membranes and Automated Analysis

    Get PDF
    In vivo membrane fusion primarily occurs between highly curved vesicles and planar membranes. A better understanding of fusion entails an accurate in vitro reproduction of the process. To date, supported bilayers have been commonly used to mimic the planar membranes. Soluble <i>N</i>-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins that induce membrane fusion usually have limited fluidity when embedded in supported bilayers. This alters the kinetics and prevents correct reconstitution of the overall fusion process. Also, observing content release across the membrane is hindered by the lack of a second aqueous compartment. Recently, a step toward resolving these issues was achieved by using membranes spread on holey substrates. The mobility of proteins was preserved but vesicles were prone to bind to the substrate when reaching the edge of the hole, preventing the observation of many fusion events over the suspended membrane. Building on this recent advance, we designed a method for the formation of pore-spanning lipid bilayers containing t-SNARE proteins on Si/SiO<sub>2</sub> holey chips, allowing the observation of many individual vesicle fusion events by both lipid mixing and content release. With this setup, proteins embedded in the suspended membrane bounced back when they reached the edge of the hole which ensured vesicles did not bind to the substrate. We observed SNARE-dependent membrane fusion with the freestanding bilayer of about 500 vesicles. The time between vesicle docking and fusion is ∼1 s. We also present a new multimodal open-source software, Fusion Analyzer Software, which is required for fast data analysis

    High-Throughput Monitoring of Single Vesicle Fusion Using Freestanding Membranes and Automated Analysis

    No full text
    In vivo membrane fusion primarily occurs between highly curved vesicles and planar membranes. A better understanding of fusion entails an accurate in vitro reproduction of the process. To date, supported bilayers have been commonly used to mimic the planar membranes. Soluble <i>N</i>-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins that induce membrane fusion usually have limited fluidity when embedded in supported bilayers. This alters the kinetics and prevents correct reconstitution of the overall fusion process. Also, observing content release across the membrane is hindered by the lack of a second aqueous compartment. Recently, a step toward resolving these issues was achieved by using membranes spread on holey substrates. The mobility of proteins was preserved but vesicles were prone to bind to the substrate when reaching the edge of the hole, preventing the observation of many fusion events over the suspended membrane. Building on this recent advance, we designed a method for the formation of pore-spanning lipid bilayers containing t-SNARE proteins on Si/SiO<sub>2</sub> holey chips, allowing the observation of many individual vesicle fusion events by both lipid mixing and content release. With this setup, proteins embedded in the suspended membrane bounced back when they reached the edge of the hole which ensured vesicles did not bind to the substrate. We observed SNARE-dependent membrane fusion with the freestanding bilayer of about 500 vesicles. The time between vesicle docking and fusion is ∼1 s. We also present a new multimodal open-source software, Fusion Analyzer Software, which is required for fast data analysis

    Interaction parameters (diffusion coefficients and mobile fractions) of Syn1A and cdVAMP2 in a sponge phase, in the absence or presence of Munc18-1.

    No full text
    <p>FITC-labeled molecules are indicated with a star. Two-sample <i>t</i>-tests on fast diffusion components: cdVAMP2* vs. Syn1A+cdVAMP2* (p<0.05); cdVAMP2* vs. Syn1A+cdVAMP2*+Munc18 (non-significant); Syn1A+cdVAMP2* vs. Syn1A+cdVAMP2*+Munc18 (p<0.05). Two-sample <i>t</i>-test on slow diffusion components: Syn1A* vs. Syn1A+cdVAMP2* (non-significant).</p

    High-Throughput Monitoring of Single Vesicle Fusion Using Freestanding Membranes and Automated Analysis

    No full text
    In vivo membrane fusion primarily occurs between highly curved vesicles and planar membranes. A better understanding of fusion entails an accurate in vitro reproduction of the process. To date, supported bilayers have been commonly used to mimic the planar membranes. Soluble <i>N</i>-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins that induce membrane fusion usually have limited fluidity when embedded in supported bilayers. This alters the kinetics and prevents correct reconstitution of the overall fusion process. Also, observing content release across the membrane is hindered by the lack of a second aqueous compartment. Recently, a step toward resolving these issues was achieved by using membranes spread on holey substrates. The mobility of proteins was preserved but vesicles were prone to bind to the substrate when reaching the edge of the hole, preventing the observation of many fusion events over the suspended membrane. Building on this recent advance, we designed a method for the formation of pore-spanning lipid bilayers containing t-SNARE proteins on Si/SiO<sub>2</sub> holey chips, allowing the observation of many individual vesicle fusion events by both lipid mixing and content release. With this setup, proteins embedded in the suspended membrane bounced back when they reached the edge of the hole which ensured vesicles did not bind to the substrate. We observed SNARE-dependent membrane fusion with the freestanding bilayer of about 500 vesicles. The time between vesicle docking and fusion is ∼1 s. We also present a new multimodal open-source software, Fusion Analyzer Software, which is required for fast data analysis

    High-Throughput Monitoring of Single Vesicle Fusion Using Freestanding Membranes and Automated Analysis

    No full text
    In vivo membrane fusion primarily occurs between highly curved vesicles and planar membranes. A better understanding of fusion entails an accurate in vitro reproduction of the process. To date, supported bilayers have been commonly used to mimic the planar membranes. Soluble <i>N</i>-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins that induce membrane fusion usually have limited fluidity when embedded in supported bilayers. This alters the kinetics and prevents correct reconstitution of the overall fusion process. Also, observing content release across the membrane is hindered by the lack of a second aqueous compartment. Recently, a step toward resolving these issues was achieved by using membranes spread on holey substrates. The mobility of proteins was preserved but vesicles were prone to bind to the substrate when reaching the edge of the hole, preventing the observation of many fusion events over the suspended membrane. Building on this recent advance, we designed a method for the formation of pore-spanning lipid bilayers containing t-SNARE proteins on Si/SiO<sub>2</sub> holey chips, allowing the observation of many individual vesicle fusion events by both lipid mixing and content release. With this setup, proteins embedded in the suspended membrane bounced back when they reached the edge of the hole which ensured vesicles did not bind to the substrate. We observed SNARE-dependent membrane fusion with the freestanding bilayer of about 500 vesicles. The time between vesicle docking and fusion is ∼1 s. We also present a new multimodal open-source software, Fusion Analyzer Software, which is required for fast data analysis

    High-Throughput Monitoring of Single Vesicle Fusion Using Freestanding Membranes and Automated Analysis

    No full text
    In vivo membrane fusion primarily occurs between highly curved vesicles and planar membranes. A better understanding of fusion entails an accurate in vitro reproduction of the process. To date, supported bilayers have been commonly used to mimic the planar membranes. Soluble <i>N</i>-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins that induce membrane fusion usually have limited fluidity when embedded in supported bilayers. This alters the kinetics and prevents correct reconstitution of the overall fusion process. Also, observing content release across the membrane is hindered by the lack of a second aqueous compartment. Recently, a step toward resolving these issues was achieved by using membranes spread on holey substrates. The mobility of proteins was preserved but vesicles were prone to bind to the substrate when reaching the edge of the hole, preventing the observation of many fusion events over the suspended membrane. Building on this recent advance, we designed a method for the formation of pore-spanning lipid bilayers containing t-SNARE proteins on Si/SiO<sub>2</sub> holey chips, allowing the observation of many individual vesicle fusion events by both lipid mixing and content release. With this setup, proteins embedded in the suspended membrane bounced back when they reached the edge of the hole which ensured vesicles did not bind to the substrate. We observed SNARE-dependent membrane fusion with the freestanding bilayer of about 500 vesicles. The time between vesicle docking and fusion is ∼1 s. We also present a new multimodal open-source software, Fusion Analyzer Software, which is required for fast data analysis

    Interaction between SNARE proteins in a sponge phase.

    No full text
    <p>The full length Syn1A protein and the cytoplasmic domain of FITC-labeled VAMP2 protein (cdVAMP2*) were reconstituted into two separate sponge phases (at the respective lipid-to-protein molar ratios of 20,000 and 80,000). The Syn1A sponge was pre-incubated for 1 hour at room temperature with or without Munc18-1 protein (1:1 molar ratio between Syn1A and Munc18-1). The Syn1A ± Munc18-1 sponge and the cdVAMP2* sponge were then mixed and allowed to interact for 1 hour at room temperature. In the absence of Munc18-1 (blue fitting curve), cdVAMP2* displays two diffusion coefficients: a slow diffusion coefficient (2.0 ± 0.1 μm<sup>2</sup>/s) corresponding to cdVAMP2* bound to Syn1A in the sponge membrane and a fast diffusion coefficient (9.7 ± 1.4 μm<sup>2</sup>/s) corresponding to free (unbound) cdVAMP2* in the sponge channels. In the presence of Munc18-1 (red fitting curve), cdVAMP2* displays a single, fast, diffusion coefficient (6.4 ± 1.1 μm<sup>2</sup>/s), as observed when it is added to a protein-free sponge phase, showing that Munc18-1 inhibits the interaction between Syn1A and cdVAMP2* (see also <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0158457#pone.0158457.t003" target="_blank">Table 3</a>).</p

    Formation of Giant Unilamellar Proteo-Liposomes by Osmotic Shock

    No full text
    Giant unilamellar vesicles (GUVs), composed of a phospholipid bilayer, are often used as a model system for cell membranes. However, the study of proteo-membrane interactions in this system is limited as the incorporation of integral and lipid-anchored proteins into GUVs remains challenging. Here, we present a simple generic method to incorporate proteins into GUVs. The basic principle is to break proteo-liposomes with an osmotic shock. They subsequently reseal into larger vesicles which, if necessary, can endure the same to obtain even larger proteo-GUVs. This process does not require specific lipids or reagents, works under physiological conditions with high concentrations of protein, the proteins remains functional after incorporation. The resulting proteo-GUVs can be micromanipulated. Moreover, our protocol is valid for a wide range of protein substrates. We have successfully reconstituted three structurally different proteins, two trans-membrane proteins (TolC and the neuronal t-SNARE), and one lipid-anchored peripheral protein (GABARAP-Like 1 (GL1)). In each case, we verified that the protein remains active after incorporation and in its correctly folded state. We also measured their mobility by performing diffusion measurements via fluorescence recovery after photobleaching (FRAP) experiments on micromanipulated single GUVs. The diffusion coefficients are in agreement with previous data
    corecore