18,096 research outputs found

    A quantum dynamical comparison of the electronic couplings derived from quantum electrodynamics and Förster theory:Application to 2D molecular aggregates

    Get PDF
    The objective of this study is to investigate under what circumstances Förster theory of electronic (resonance) energy transfer breaks down in molecular aggregates. This is achieved by simulating the dynamics of exciton diffusion, on the femtosecond timescale, in molecular aggregates using the Liouville–von Neumann equation of motion. Specifically the focus of this work is the investigation of both spatial and temporal deviations between exciton dynamics driven by electronic couplings calculated from Förster theory and those calculated from quantum electrodynamics. The quantum electrodynamics (QED) derived couplings contain medium- and far-zone terms that do not exist in Förster theory. The results of the simulations indicate that Förster coupling is valid when the dipole centres are within a few nanometres of one another. However, as the distance between the dipole centres increases from 2 nm to 10 nm, the intermediate- and far-zone coupling terms play non-negligible roles and Förster theory begins to break down. Interestingly, the simulations illustrate how contributions to the exciton dynamics from the intermediate- and far-zone coupling terms of QED are quickly washed-out by the near-zone mechanism of Förster theory for lattices comprising closely packed molecules. On the other hand, in the case of sparsely packed arrays, the exciton dynamics resulting from the different theories diverge within the 100 fs lifetime of the trajectories. These results could have implications for the application of spectroscopic ruler techniques as well as design principles relating to energy harvesting materials

    Some Observations on Teaching from the Pioneer Generation

    Get PDF
    A paper from the perspective of the pioneer generation

    Do structured methods help eco-innovation: An evaluation of the product ideas tree diagram

    Get PDF
    This paper reports on the first test of the Product Ideas Tree diagram (PIT): a structured method aimed to help Eco-innovation. The PIT diagram structures ideas output from chaotic idea generating sessions. This study compared four ways of conducting an Eco-innovation workshop. The results show that structured methods help Eco-innovation by improving the constructive communication between the participants. Further development of the PIT diagram promises to contribute several new approaches to sustainable product and process design
    • 

    corecore