13 research outputs found

    Electrochemically Generated Acid and Its Containment to 100 Micron Reaction Areas for the Production of DNA Microarrays

    Get PDF
    An addressable electrode array was used for the production of acid at sufficient concentration to allow deprotection of the dimethoxytrityl (DMT) protecting group from an overlaying substrate bound to a porous reaction layer. Containment of the generated acid to an active electrode of 100 micron diameter was achieved by the presence of an organic base. This procedure was then used for the production of a DNA array, in which synthesis was directed by the electrochemical removal of the DMT group during synthesis. The product array was found to have a detection sensitivity to as low as 0.5 pM DNA in a complex background sample

    Performance Evaluation of the New AMS System at Accium BioSciences

    No full text
    A new compact accelerator mass spectrometry (AMS) system dedicated to the measurement of radiocarbon has been commissioned at the Accium BioSciences headquarters in Seattle. The entire facility (including ancillary laboratories for the preparation of graphite targets) has been designed to handle samples with a wide range of 14C concentrations. In this paper, we discuss the technical details of the new facility and present performance test results demonstrating state-of-the-art capabilities. In particular, modern samples can be readily measured with 0.3% precision and accuracy, machine background levels are consistently in the low 1016 (14C/12C), and chemical background is approximately equivalent to a fraction of modern of 0.004. In addition, when 100-times-modern samples were processed, no increase in background was observed, either during sample processing or during AMS measurement. This corresponds to a dynamic range for 14C analysis of 6 orders of magnitude.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202

    Use of Semiconductor-Based Oligonucleotide Microarrays for Influenza A Virus Subtype Identification and Sequencing

    No full text
    In the face of concerns over an influenza pandemic, identification of virulent influenza A virus isolates must be obtained quickly for effective responses. Rapid subtype identification, however, is difficult even in well-equipped virology laboratories or is unobtainable in the field under more austere conditions. Here we describe a genome assay and microarray design that can be used to rapidly identify influenza A virus hemagglutinin subtypes 1 through 15 and neuraminidase subtypes 1 through 9. Also described is an array-based enzymatic assay that can be used to sequence portions of both genes or any other sequence of interest
    corecore