6 research outputs found

    Understanding Differential Equations Using Mathematica and Interactive Demonstrations

    Get PDF
    The solution of differential equations using the software package Mathematica is discussed in this paper. We focus on two functions, DSolve and NDSolve, and give various examples of how one can obtain symbolic or numerical results using these functions. An overview of the Wolfram Demonstrations Project (http://demonstrations.wolfram.com) is given, along with various novel user-contributed examples in the field of differential equations. The use of these Demonstrations in a classroom setting is elaborated upon to emphasize their significance for education

    Convergence Radii for Eigenvalues of Tri--diagonal Matrices

    Get PDF
    Consider a family of infinite tri--diagonal matrices of the form L+zB,L+ zB, where the matrix LL is diagonal with entries Lkk=k2,L_{kk}= k^2, and the matrix BB is off--diagonal, with nonzero entries Bk,k+1=Bk+1,k=kα,0≤α<2.B_{k,{k+1}}=B_{{k+1},k}= k^\alpha, 0 \leq \alpha < 2. The spectrum of L+zBL+ zB is discrete. For small ∣z∣|z| the nn-th eigenvalue En(z),En(0)=n2,E_n (z), E_n (0) = n^2, is a well--defined analytic function. Let RnR_n be the convergence radius of its Taylor's series about z=0.z= 0. It is proved that R_n \leq C(\alpha) n^{2-\alpha} \quad \text{if} 0 \leq \alpha <11/6.$

    Tumours

    No full text
    corecore