research

Convergence Radii for Eigenvalues of Tri--diagonal Matrices

Abstract

Consider a family of infinite tri--diagonal matrices of the form L+zB,L+ zB, where the matrix LL is diagonal with entries Lkk=k2,L_{kk}= k^2, and the matrix BB is off--diagonal, with nonzero entries Bk,k+1=Bk+1,k=kα,0α<2.B_{k,{k+1}}=B_{{k+1},k}= k^\alpha, 0 \leq \alpha < 2. The spectrum of L+zBL+ zB is discrete. For small z|z| the nn-th eigenvalue En(z),En(0)=n2,E_n (z), E_n (0) = n^2, is a well--defined analytic function. Let RnR_n be the convergence radius of its Taylor's series about z=0.z= 0. It is proved that R_n \leq C(\alpha) n^{2-\alpha} \quad \text{if} 0 \leq \alpha <11/6.$

    Similar works