292 research outputs found

    Surfactant-induced migration of a spherical drop in Stokes flow

    Full text link
    In Stokes flows, symmetry considerations dictate that a neutrally-buoyant spherical particle will not migrate laterally with respect to the local flow direction. We show that a loss of symmetry due to flow-induced surfactant redistribution leads to cross-stream drift of a spherical drop in Poiseuille flow. We derive analytical expressions for the migration velocity in the limit of small non-uniformities in the surfactant distribution, corresponding to weak-flow conditions or a high-viscosity drop. The analysis predicts that the direction of migration is always towards the flow centerline.Comment: Significant extension with additional text, figures, equations, et

    The Challenges and Potential of Nuclear Energy for Addressing Climate Change

    Get PDF
    The response to climate change and the stabilization of atmospheric greenhouse gas concentrations has major implications for the global energy system. Stabilization of atmospheric carbon dioxide (CO2) concentrations requires a peak and an indefinite decline of global CO2 emissions. Nuclear energy, along with other technologies, has the potential to contribute to the growing demand for energy without emitting CO2. Nuclear energy is of particular interest because of its global prevalence and its current significant contribution, nearly 20%, to the worldā€™s electricity supply. We have investigated the value of nuclear energy in addressing climate change, and have explored the potential challenges for the rapid and large-scale expansion of nuclear energy as a response to climate change. The scope of this study is long-term and the modeling time frame extends out a century because the nature of nuclear energy and climate change dictate that perspective. Our results indicate that the value of the nuclear technology option for addressing climate change is denominated in trillions of dollars. Several-fold increases to the value of the nuclear option can be expected if there is limited availability of competing carbon-free technologies, particularly fossil-fuel based technologies that can capture and sequester carbon. Challenges for the expanded global use of nuclear energy include the global capacity for nuclear construction, proliferation, uranium availability, and waste disposal. While the economic costs of nuclear fuel and power are important, non-economic issues transcend the issues of costs. In this regard, advanced nuclear technologies and new vision for the global use of nuclear energy are important considerations for the future of nuclear power and climate change

    Bioenergy and the importance of land use policy in a carbon-constrained world

    Get PDF
    Policies aimed at limiting anthropogenic climate change would result in significant transformations of the energy and land-use systems. However, increasing the demand for bioenergy could have a tremendous impact on land use, and can result in land clearing and deforestation. Wise et al. (2009a,b) analyzed an idealized policy to limit the indirect land use change emissions from bioenergy. The policy, while effective, would be difficult, if not impossible, to implement in the real world. In this paper, we consider several different land use policies that deviate from this first-best, using the Joint Global Change Research Instituteā€™s Global Change Assessment Model (GCAM). Specifically, these new frameworks are (1) a policy that focuses on just the above-ground or vegetative terrestrial carbon rather than the total carbon, (2) policies that focus exclusively on incentivizing and protecting forestland, and (3) policies that apply an economic penalty on the use of biomass as a proxy to limit indirect land use change emissions. For each policy, we examine its impact on land use, land-use change emissions, atmospheric CO2 concentrations, agricultural supply, and food prices

    Grain-size controls on the morphology and internal geometry of river-dominated deltas

    Get PDF
    Predictions of a delta's morphology, facies, and stratigraphy are typically derived from its relative wave, tide, and river energies, with sediment type playing a lesser role. Here we test the hypothesis that, all other factors being equal, the topset of a relatively noncohesive, sandy delta will have more active distributaries, a less rugose shoreline morphology, less topographic variation in its topset, and less variability in foreset dip directions than a highly cohesive, muddy delta. As a consequence its stratigraphy will have greater clinoform dip magnitudes and clinoform concavity, a greater percentage of channel facies, and less rugose sand bodies than a highly cohesive, muddy delta. Nine self-formed deltas having different sediment grain sizes and critical shear stresses required for re-entrainment of mud are simulated using Deflt3D, a 2D flow and sediment-transport model. Model results indicate that sand-dominated deltas are more fan-shaped while mud-dominated deltas are more birdsfoot in planform, because the sand-dominated deltas have more active distributaries and a smaller variance of topset elevations, and thereby experience a more equitable distribution of sediment to their perimeters. This results in a larger proportion of channel facies in sand-dominated deltas, and more uniformly distributed clinoform dip directions, steeper dips, and greater clinoform concavity. These conclusions are consistent with data collected from the Goose River Delta, a coarse-grained fan delta prograding into Goose Bay, Labrador, Canada. A reinterpretation of the Kf-1 parasequence set of the Cretaceous Last Chance Delta, a unit of the Ferron Sandstone near Emery, Utah, USA uses Ferron grain-size data, clinoform-dip data, clinoform concavity, and variance of dip directions to hindcast the delta's planform. The Kf-1 Last Chance Delta is predicted to have been more like a fan delta in planform than a birdsfoot delta

    Electric Field-Tuned Topological Phase Transition in Ultra-Thin Na3Bi - Towards a Topological Transistor

    Full text link
    The electric field induced quantum phase transition from topological to conventional insulator has been proposed as the basis of a topological field effect transistor [1-4]. In this scheme an electric field can switch 'on' the ballistic flow of charge and spin along dissipationless edges of the two-dimensional (2D) quantum spin Hall insulator [5-9], and when 'off' is a conventional insulator with no conductive channels. Such as topological transistor is promising for low-energy logic circuits [4], which would necessitate electric field-switched materials with conventional and topological bandgaps much greater than room temperature, significantly greater than proposed to date [6-8]. Topological Dirac semimetals(TDS) are promising systems in which to look for topological field-effect switching, as they lie at the boundary between conventional and topological phases [3,10-16]. Here we use scanning probe microscopy/spectroscopy (STM/STS) and angle-resolved photoelectron spectroscopy (ARPES) to show that mono- and bilayer films of TDS Na3Bi [3,17] are 2D topological insulators with bulk bandgaps >400 meV in the absence of electric field. Upon application of electric field by doping with potassium or by close approach of the STM tip, the bandgap can be completely closed then re-opened with conventional gap greater than 100 meV. The large bandgaps in both the conventional and quantum spin Hall phases, much greater than the thermal energy kT = 25 meV at room temperature, suggest that ultrathin Na3Bi is suitable for room temperature topological transistor operation

    Long Spin Coherence and Relaxation Times in Nanodiamonds Milled from Polycrystalline 12^{12}C Diamond

    Get PDF
    The negatively charged nitrogen-vacancy centre (NVāˆ’^-) in diamond has been utilized in a wide variety of sensing applications. The centre's long spin coherence and relaxation times (T2āˆ—T_2^*, T2T_2 and T1T_1) at room temperature are crucial to this, as they often limit sensitivity. Using NVāˆ’^- centres in nanodiamonds allows for operations in environments inaccessible to bulk diamond, such as intracellular sensing. We report long spin coherence and relaxation times at room temperature for single NVāˆ’^- centres in isotopically-purified polycrystalline ball-milled nanodiamonds. Using a spin-locking pulse sequence, we observe spin coherence times, T2T_2, up 786 Ā±\pm 200 Ī¼\mus. We also measure T2āˆ—T_2^* times up to 2.06 Ā±\pm 0.24 Ī¼\mus and T1T_1 times up to 4.32 Ā±\pm 0.60 ms. Scanning electron microscopy and atomic force microscopy measurements show that the diamond containing the NVāˆ’^{-} centre with the longest T1T_1 time is smaller than 100 nm. EPR measurements give an Ns_{s}0^{0} concentration of 0.15 Ā±\pm 0.02 ppm for the nanodiamond sample.Comment: 13 pages, 3 figure

    STRAD Pseudokinases Regulate Axogenesis and LKB1 Stability

    Get PDF
    BACKGROUND: Neuronal polarization is an essential step of morphogenesis and connectivity in the developing brain. The serine/threonine kinase LKB1 is a key regulator of cell polarity, metabolism, tumorigenesis, and is required for axon formation. It is allosterically regulated by two related and evolutionarily conserved pseudokinases, STe20-Related ADapters (STRADs) Ī± and Ī². The roles of STRADĪ± and STRADĪ² in the developing nervous system are not fully defined, nor is it known whether they serve distinct functions. RESULTS: We find that STRADĪ± is highly spliced and appears to be the primal STRAD paralog. We report that each STRAD is sufficient for axogenesis and promoting cell survival in the developing cortex. We also reveal a reciprocal protein-stabilizing relationship in vivo between LKB1 and STRADĪ±, whereby STRADĪ± specifically maintains LKB1 protein levels via cytoplasmic compartmentalization. CONCLUSIONS: We demonstrate a novel role for STRADĪ² in axogenesis and also show for the first time in vivo that STRADĪ±, but not STRADĪ², is responsible for LKB1 protein stability

    Degeneracy: a link between evolvability, robustness and complexity in biological systems

    Get PDF
    A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of adaptive innovations (evolvability) and evidence of an intimate relationship between robustness and complexity in biology. This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present evidence that degeneracy is a fundamental source of robustness, it is intimately tied to multi-scaled complexity, and it establishes conditions that are necessary for system evolvability
    • ā€¦
    corecore