864 research outputs found

    Limitations of the Standard Gravitational Perfect Fluid Paradigm

    Full text link
    We show that the standard perfect fluid paradigm is not necessarily a valid description of a curved space steady state gravitational source. Simply by virtue of not being flat, curved space geometries have to possess intrinsic length scales, and such length scales can affect the fluid structure. For modes of wavelength of order or greater than such scales eikonalized geometrical optics cannot apply and rays are not geodesic. Covariantizing thus entails not only the replacing of flat space functions by covariant ones, but also the introduction of intrinsic scales that were absent in flat space. In principle it is thus unreliable to construct the curved space energy-momentum tensor as the covariant generalization of a geodesic-based flat spacetime energy-momentum tensor. By constructing the partition function as an incoherent average over a complete set of modes of a scalar field propagating in a curved space background, we show that for the specific case of a static, spherically symmetric geometry, the steady state energy-momentum tensor that ensues will in general be of the form Tμν=(ρ+p)UμUν+pgμν+πμνT_{\mu\nu}=(\rho+p)U_{\mu}U_{\nu}+pg_{\mu\nu}+\pi_{\mu\nu} where the anisotropic πμν\pi_{\mu\nu} is a symmetric, traceless rank two tensor which obeys Uμπμν=0U^{\mu}\pi_{\mu\nu}=0. Such a πμν\pi_{\mu\nu} type term is absent for an incoherently averaged steady state fluid in a spacetime where there are no intrinsic length scales, and in principle would thus be missed in a covariantizing of a flat spacetime TμνT_{\mu\nu}. While the significance of such πμν\pi_{\mu\nu} type terms would need to be evaluated on a case by case basis, through the use of kinetic theory we reassuringly find that the effect of such πμν\pi_{\mu\nu} type terms is small for weak gravity stars where perfect fluid sources are commonly used.Comment: Final version to appear in General Relativity and Gravitation (the final publication is available at http://www.springerlink.com). 29 pages, 1 figur

    The structural behaviour in fire of a cold-formed steel portal frame having semi-rigid joints

    Get PDF
    This paper describes a non-linear finite element study into the effects of elevated temperature on a cold-formed steel portal frame having semi-rigid joints. Numerical modelling was carried out using ABAQUS finite element analysis software with shell elements used to capture localised buckling effects. Results for the ambient shell models are compared against previous full-scale tests. Material properties are taken from the literature, in order to predict the behaviour of the frame at elevated temperature. The results of finite element beam models are compared against those of shell models to enable comparison. At elevated temperature, shell models are shown to detect failure much earlier within the fire. Therefore shell models are recommended for such studies, for a conservative approach

    Gain reversal studies in photorefractive waveguides

    No full text
    We report on low-loss photorefractive BaTiO3 H+ implanted waveguides exhibiting reversal of two-beam-coupling gain direction, caused by induced colour centres. The anomalous two-beam-coupling gain has been investigated as a function of the input beam ratio

    Reduced thermodynamic description of phase separation in a quasi-one-dimensional granular gas

    Get PDF
    We describe simulations of a quasi-one-dimensional, vibrated granular gas which exhibits an apparent phase separation into a liquidlike phase and a gaslike phase. In thermal equilibrium, such a phase separation in one dimension is prohibited by entropic considerations. We propose that the granular gas minimizes a function of the conserved mechanical variables alone: the particle number and volume. Simulations in small cells can be used to extract the equation of state and predict the coexisting pressure and densities, as confirmation of the minimization principle. Fluctuations in the system manifest themselves as persistent density waves but they do not destroy the phase-separated state

    Photorefractive planar waveguides in BaTiO<sub>3</sub> fabricated by ion-beam implantation

    No full text
    For the first time to our knowledge, photorefractive properties have been observed in planar waveguides fabricated by the technique of ion-beam implantation in BaTiO3 single crystals. The implantation was carried out by using 1.5 MeV H+ ions at a dose of 10-16 ions/cm2. For a given input power, a decrease in the effective photo-refractive two-beam coupling response time of ≥102 has been observed, owing to a combination of optical confinement within the waveguide and possible modification of charge-transport properties induced through implantation. Experiments carried out on the two-beam coupling gain show that the gain direction has been reversed in the waveguide compared with that of the bulk crystal

    Model study on the photoassociation of a pair of trapped atoms into an ultralong-range molecule

    Full text link
    Using the method of quantum-defect theory, we calculate the ultralong-range molecular vibrational states near the dissociation threshold of a diatomic molecular potential which asymptotically varies as 1/R3-1/R^3. The properties of these states are of considerable interest as they can be formed by photoassociation (PA) of two ground state atoms. The Franck-Condon overlap integrals between the harmonically trapped atom-pair states and the ultralong-range molecular vibrational states are estimated and compared with their values for a pair of untrapped free atoms in the low-energy scattering state. We find that the binding between a pair of ground-state atoms by a harmonic trap has significant effect on the Franck-Condon integrals and thus can be used to influence PA. Trap-induced binding between two ground-state atoms may facilitate coherent PA dynamics between the two atoms and the photoassociated diatomic molecule.Comment: 11 pages, 4 figures, to appear in Phys. Rev. A (September, 2003

    Black Holes from Cosmic Rays: Probes of Extra Dimensions and New Limits on TeV-Scale Gravity

    Full text link
    If extra spacetime dimensions and low-scale gravity exist, black holes will be produced in observable collisions of elementary particles. For the next several years, ultra-high energy cosmic rays provide the most promising window on this phenomenon. In particular, cosmic neutrinos can produce black holes deep in the Earth's atmosphere, leading to quasi-horizontal giant air showers. We determine the sensitivity of cosmic ray detectors to black hole production and compare the results to other probes of extra dimensions. With n \ge 4 extra dimensions, current bounds on deeply penetrating showers from AGASA already provide the most stringent bound on low-scale gravity, requiring a fundamental Planck scale M_D > 1.3 - 1.8 TeV. The Auger Observatory will probe M_D as large as 4 TeV and may observe on the order of a hundred black holes in 5 years. We also consider the implications of angular momentum and possible exponentially suppressed parton cross sections; including these effects, large black hole rates are still possible. Finally, we demonstrate that even if only a few black hole events are observed, a standard model interpretation may be excluded by comparison with Earth-skimming neutrino rates.Comment: 30 pages, 18 figures; v2: discussion of gravitational infall, AGASA and Fly's Eye comparison added; v3: Earth-skimming results modified and strengthened, published versio

    GG-Strands

    Get PDF
    A GG-strand is a map g(t,s):R×RGg(t,{s}):\,\mathbb{R}\times\mathbb{R}\to G for a Lie group GG that follows from Hamilton's principle for a certain class of GG-invariant Lagrangians. The SO(3)-strand is the GG-strand version of the rigid body equation and it may be regarded physically as a continuous spin chain. Here, SO(3)KSO(3)_K-strand dynamics for ellipsoidal rotations is derived as an Euler-Poincar\'e system for a certain class of variations and recast as a Lie-Poisson system for coadjoint flow with the same Hamiltonian structure as for a perfect complex fluid. For a special Hamiltonian, the SO(3)KSO(3)_K-strand is mapped into a completely integrable generalization of the classical chiral model for the SO(3)-strand. Analogous results are obtained for the Sp(2)Sp(2)-strand. The Sp(2)Sp(2)-strand is the GG-strand version of the Sp(2)Sp(2) Bloch-Iserles ordinary differential equation, whose solutions exhibit dynamical sorting. Numerical solutions show nonlinear interactions of coherent wave-like solutions in both cases. Diff(R){\rm Diff}(\mathbb{R})-strand equations on the diffeomorphism group G=Diff(R)G={\rm Diff}(\mathbb{R}) are also introduced and shown to admit solutions with singular support (e.g., peakons).Comment: 35 pages, 5 figures, 3rd version. To appear in J Nonlin Sc
    corecore