864 research outputs found
Limitations of the Standard Gravitational Perfect Fluid Paradigm
We show that the standard perfect fluid paradigm is not necessarily a valid
description of a curved space steady state gravitational source. Simply by
virtue of not being flat, curved space geometries have to possess intrinsic
length scales, and such length scales can affect the fluid structure. For modes
of wavelength of order or greater than such scales eikonalized geometrical
optics cannot apply and rays are not geodesic. Covariantizing thus entails not
only the replacing of flat space functions by covariant ones, but also the
introduction of intrinsic scales that were absent in flat space. In principle
it is thus unreliable to construct the curved space energy-momentum tensor as
the covariant generalization of a geodesic-based flat spacetime energy-momentum
tensor. By constructing the partition function as an incoherent average over a
complete set of modes of a scalar field propagating in a curved space
background, we show that for the specific case of a static, spherically
symmetric geometry, the steady state energy-momentum tensor that ensues will in
general be of the form
where the
anisotropic is a symmetric, traceless rank two tensor which
obeys . Such a type term is absent for an
incoherently averaged steady state fluid in a spacetime where there are no
intrinsic length scales, and in principle would thus be missed in a
covariantizing of a flat spacetime . While the significance of such
type terms would need to be evaluated on a case by case basis,
through the use of kinetic theory we reassuringly find that the effect of such
type terms is small for weak gravity stars where perfect fluid
sources are commonly used.Comment: Final version to appear in General Relativity and Gravitation (the
final publication is available at http://www.springerlink.com). 29 pages, 1
figur
The structural behaviour in fire of a cold-formed steel portal frame having semi-rigid joints
This paper describes a non-linear finite element study into the effects of elevated temperature on a cold-formed steel portal frame having semi-rigid joints. Numerical modelling was carried out using ABAQUS finite element analysis software with shell elements used to capture localised buckling effects. Results for the ambient shell models are compared against previous full-scale tests. Material properties are taken from the literature, in order to predict the behaviour of the frame at elevated temperature. The results of finite element beam models are compared against those of shell models to enable comparison. At elevated temperature, shell models are shown to detect failure much earlier within the fire. Therefore shell models are recommended for such studies, for a conservative approach
Gain reversal studies in photorefractive waveguides
We report on low-loss photorefractive BaTiO3 H+ implanted waveguides exhibiting reversal of two-beam-coupling gain direction, caused by induced colour centres. The anomalous two-beam-coupling gain has been investigated as a function of the input beam ratio
Reduced thermodynamic description of phase separation in a quasi-one-dimensional granular gas
We describe simulations of a quasi-one-dimensional, vibrated granular gas which exhibits an apparent phase separation into a liquidlike phase and a gaslike phase. In thermal equilibrium, such a phase separation in one dimension is prohibited by entropic considerations. We propose that the granular gas minimizes a function of the conserved mechanical variables alone: the particle number and volume. Simulations in small cells can be used to extract the equation of state and predict the coexisting pressure and densities, as confirmation of the minimization principle. Fluctuations in the system manifest themselves as persistent density waves but they do not destroy the phase-separated state
Hyperfine Magnetic Field Measurements in Ferromagnetic Chalcogenide Spinels and Heusler Alloys by TDPAC Technique
Supported by the National Science Foundation and Indiana Universit
Photorefractive planar waveguides in BaTiO<sub>3</sub> fabricated by ion-beam implantation
For the first time to our knowledge, photorefractive properties have been observed in planar waveguides fabricated by the technique of ion-beam implantation in BaTiO3 single crystals. The implantation was carried out by using 1.5 MeV H+ ions at a dose of 10-16 ions/cm2. For a given input power, a decrease in the effective photo-refractive two-beam coupling response time of ≥102 has been observed, owing to a combination of optical confinement within the waveguide and possible modification of charge-transport properties induced through implantation. Experiments carried out on the two-beam coupling gain show that the gain direction has been reversed in the waveguide compared with that of the bulk crystal
Model study on the photoassociation of a pair of trapped atoms into an ultralong-range molecule
Using the method of quantum-defect theory, we calculate the ultralong-range
molecular vibrational states near the dissociation threshold of a diatomic
molecular potential which asymptotically varies as . The properties of
these states are of considerable interest as they can be formed by
photoassociation (PA) of two ground state atoms. The Franck-Condon overlap
integrals between the harmonically trapped atom-pair states and the
ultralong-range molecular vibrational states are estimated and compared with
their values for a pair of untrapped free atoms in the low-energy scattering
state. We find that the binding between a pair of ground-state atoms by a
harmonic trap has significant effect on the Franck-Condon integrals and thus
can be used to influence PA. Trap-induced binding between two ground-state
atoms may facilitate coherent PA dynamics between the two atoms and the
photoassociated diatomic molecule.Comment: 11 pages, 4 figures, to appear in Phys. Rev. A (September, 2003
Black Holes from Cosmic Rays: Probes of Extra Dimensions and New Limits on TeV-Scale Gravity
If extra spacetime dimensions and low-scale gravity exist, black holes will
be produced in observable collisions of elementary particles. For the next
several years, ultra-high energy cosmic rays provide the most promising window
on this phenomenon. In particular, cosmic neutrinos can produce black holes
deep in the Earth's atmosphere, leading to quasi-horizontal giant air showers.
We determine the sensitivity of cosmic ray detectors to black hole production
and compare the results to other probes of extra dimensions. With n \ge 4 extra
dimensions, current bounds on deeply penetrating showers from AGASA already
provide the most stringent bound on low-scale gravity, requiring a fundamental
Planck scale M_D > 1.3 - 1.8 TeV. The Auger Observatory will probe M_D as large
as 4 TeV and may observe on the order of a hundred black holes in 5 years. We
also consider the implications of angular momentum and possible exponentially
suppressed parton cross sections; including these effects, large black hole
rates are still possible. Finally, we demonstrate that even if only a few black
hole events are observed, a standard model interpretation may be excluded by
comparison with Earth-skimming neutrino rates.Comment: 30 pages, 18 figures; v2: discussion of gravitational infall, AGASA
and Fly's Eye comparison added; v3: Earth-skimming results modified and
strengthened, published versio
-Strands
A -strand is a map for a Lie
group that follows from Hamilton's principle for a certain class of
-invariant Lagrangians. The SO(3)-strand is the -strand version of the
rigid body equation and it may be regarded physically as a continuous spin
chain. Here, -strand dynamics for ellipsoidal rotations is derived as
an Euler-Poincar\'e system for a certain class of variations and recast as a
Lie-Poisson system for coadjoint flow with the same Hamiltonian structure as
for a perfect complex fluid. For a special Hamiltonian, the -strand is
mapped into a completely integrable generalization of the classical chiral
model for the SO(3)-strand. Analogous results are obtained for the
-strand. The -strand is the -strand version of the
Bloch-Iserles ordinary differential equation, whose solutions exhibit dynamical
sorting. Numerical solutions show nonlinear interactions of coherent wave-like
solutions in both cases. -strand equations on the
diffeomorphism group are also introduced and shown
to admit solutions with singular support (e.g., peakons).Comment: 35 pages, 5 figures, 3rd version. To appear in J Nonlin Sc
- …