24,155 research outputs found
Structural performance of two aerobrake hexagonal heat shield panel concepts
Structural sizing and performance are presented for two structural concepts for an aerobrake hexagonal heat shield panel. One concept features a sandwich construction with an aluminum honeycomb core and thin quasi-isotropic graphite-epoxy face sheets. The other concept features a skin-rib isogrid construction with thin quasi-isotropic graphite-epoxy skins and graphite-epoxy ribs oriented at 0, +60, and -60 degs along the panel. Linear static, linear bifurcation buckling, and nonlinear static analyses were performed to compare the structural performance of the two panel concepts and assess their feasibility for a lunar transfer vehicle aerobrake application
Neuroevolution on the Edge of Chaos
Echo state networks represent a special type of recurrent neural networks.
Recent papers stated that the echo state networks maximize their computational
performance on the transition between order and chaos, the so-called edge of
chaos. This work confirms this statement in a comprehensive set of experiments.
Furthermore, the echo state networks are compared to networks evolved via
neuroevolution. The evolved networks outperform the echo state networks,
however, the evolution consumes significant computational resources. It is
demonstrated that echo state networks with local connections combine the best
of both worlds, the simplicity of random echo state networks and the
performance of evolved networks. Finally, it is shown that evolution tends to
stay close to the ordered side of the edge of chaos.Comment: To appear in Proceedings of the Genetic and Evolutionary Computation
Conference 2017 (GECCO '17
ASSESSMENT OF RISK WHEN CONTRACT CROPS ARE INCLUDED AMONG OTHER CROP ALTERNATIVES
Crop Production/Industries, Risk and Uncertainty,
Whole Module Offgas Test Report: Space-X Dragon Module
Between 7 April and 11 April 2012 a chemist from the JSC Toxicology Group acquired samples of air in 500 ml evacuated canisters from the sealed Dragon Module at the Space-X facility at KSC. Three samples were taken of facility air (two before the test and one after the test), and a total of 9 samples were taken from the sealed module in triplicate at the following times: 0 hours, 48 hours, and 96 hours. The module contained 470 kg, which was 100% of the mass to be launched. Analytical data contained in the Toxicology Group Report (attached) show that the ambient facility air was clean except for almost 9 milligrams per cubic meter of isopropanol (IPA) in the sample taken at the end of the test. Space-X must ensure that IPA is not introduced into the module before it is sealed for launch. Other minor contaminants in the ambient air included the following: perfluoro(2-methyl)pentane and hexamethylcyclotrisiloxane. The first-acquired samples of each triplicate from the module were not analyzed. Analyses of pairs of samples that were taken during the test show excellent agreement between the pairs and a linear increase in the T-values during the 4 days of the test (figure below). The rate of increase averaged 0.124 T units per day. If the time from last purge of the module on the ground to crew first entry on orbit is 10 days, then the T value at first entry should be less than 1.2 units, which is well below the criterion of 3.0 for consideration of additional protection of the crew from offgas products. The primary contributors were as follows: trimethylsilanol (0.057), fluorotrimethylsilane (0.047), acetaldehyde (0.004), hexamethylcyclopentasiloxane (0.003), and toluene (0.002)
Assessment of Air Quality in the Shuttle and International Space Station (ISS) Based on Samples Returned by STS-104 at the Conclusion of 7A
The toxicological assessment of air samples returned at the end of the STS-l04 (7 A) flight to the ISS is reported. ISS air samples were taken in June and July 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges. Preflight and end-of-mission samples were obtained from Atlantis using GSCs. Solid sorbent air sampler (SSAS) samples were obtained from the ISS in April, June, and July. Analytical methods have not changed from earlier reports, and all quality control measures were met
Toxicological Assessment of ISS Air Quality: September 2012 - October 2012 with Formaldehyde Supplement from May-October 2012
A summary of the analytical results from 6 grab sample containers (GSCs) and 12 pairs of formaldehyde badges collected on ISS and returned aboard 29S or 31 S is shown in an accompanying table. The average recoveries of the 3 surrogate standards from the GSCs were as follows: C-l3-acetone, 128%; fluorobenzene, 114%; and chlorobenzene, 78%. Recoveries of two lab-control formaldehyde badges averaged 95%
Whole Module Offgas Test Report: Orbital D-1 Module
No abstract availabl
- …