304 research outputs found

    The Collapse of Large Extra Dimensions

    Get PDF
    In models of spacetime that are the product of a four-dimensional spacetime with an ``extra'' dimension, there is the possibility that the extra dimension will collapse to zero size, forming a singularity. We ask whether this collapse is likely to destroy the spacetime. We argue, by an appeal to the four-dimensional cosmic censorship conjecture, that--at least in the case when the extra dimension is homogeneous--such a collapse will lead to a singularity hidden within a black string. We also construct explicit initial data for a spacetime in which such a collapse is guaranteed to occur and show how the formation of a naked singularity is likely avoided.Comment: Uses revtex

    Vortex microavalanches in superconducting Pb thin films

    Full text link
    Local magnetization measurements on 100 nm type-II superconducting Pb thin films show that flux penetration changes qualitatively with temperature. Small flux jumps at the lowest temperatures gradually increase in size, then disappear near T = 0.7Tc. Comparison with other experiments suggests that the avalanches correspond to dendritic flux protrusions. Reproducibility of the first flux jumps in a decreasing magnetic field indicates a role for defect structure in determining avalanches. We also find a temperature-independent final magnetization after flux jumps, analogous to the angle of repose of a sandpile.Comment: 6 pages, 5 figure

    Holography from Conformal Field Theory

    Full text link
    The locality of bulk physics at distances below the AdS length is one of the remarkable aspects of AdS/CFT duality, and one of the least tested. It requires that the AdS radius be large compared to the Planck length and the string length. In the CFT this implies a large-N expansion and a gap in the spectum of anomalous dimensions. We conjecture that the implication also runs in the other direction, so that any CFT with a planar expansion and a large gap has a local bulk dual. For an abstract CFT we formulate the consistency conditions, most notably crossing symmetry, and show that the conjecture is true in a broad range of CFT's, to first nontrivial order in 1/N^2: any CFT with a gap and a planar expansion is generated via the AdS/CFT dictionary from a local bulk interaction. We establish this result by a counting argument on each side, and also investigate various properties of some explicit solutions.Comment: 49 pages. Minor corrections. Figure and references adde

    Cosmology of codimension-two braneworlds

    Full text link
    We present a comprehensive study of the cosmological solutions of 6D braneworld models with azimuthal symmetry in the extra dimensions, moduli stabilization by flux or a bulk scalar field, and which contain at least one 3-brane that could be identified with our world. We emphasize an unusual property of these models: their expansion rate depends on the 3-brane tension either not at all, or in a nonstandard way, at odds with the naive expected dimensional reduction of these systems to 4D general relativity at low energies. Unlike other braneworld attempts to find a self-tuning solution to the cosmological constant problem, the apparent failure of decoupling in these models is not associated with the presence of unstabilized moduli; rather it is due to automatic cancellation of the brane tension by the curvature induced by the brane. This provides some corroboration for the hope that these models provide a distinctive step toward understanding the smallness of the observed cosmological constant. However, we point out some challenges for obtaining realistic cosmology within this framework.Comment: 30 pages, 4 figures; generalized result for nonconventional Friedmann equation, added referenc

    Lorentz invariance violation in top-down scenarios of ultrahigh energy cosmic ray creation

    Full text link
    The violation of Lorentz invariance (LI) has been invoked in a number of ways to explain issues dealing with ultrahigh energy cosmic ray (UHECR) production and propagation. These treatments, however, have mostly been limited to examples in the proton-neutron system and photon-electron system. In this paper we show how a broader violation of Lorentz invariance would allow for a series of previously forbidden decays to occur, and how that could lead to UHECR primaries being heavy baryonic states or Higgs bosons.Comment: Replaced with heavily revised (see new Abstract) version accepted by Phys. Rev. D. 6 page

    Dynamical Stability of Six-Dimensional Warped Brane-Worlds

    Get PDF
    We study a generalization of the Randall-Sundrum mechanism for generating the weak/Planck hierarchy, which uses two rather than one warped extra dimension, and which requires no negative tension branes. A 4-brane with one exponentially large compact dimension plays the role of the Planck brane. We investigate the dynamical stability with respect to graviton, graviphoton and radion modes. The radion is shown to have a tachyonic instability for certain models of the 4-brane stress-energy, while it is stable in others, and massless in a special case. If stable, its mass is in the milli-eV range, for parameters of the model which solve the hierarchy problem. The radion is shown to couple to matter with gravitational strength, so that it is potentially detectable by submillimeter-range gravity experiments. The radion mass can be increased using a bulk scalar field in the manner of Goldberger and Wise, but only to order MeV, due to the effect of the large extra dimension. The model predicts a natural scale of 10^{13} GeV on the 4-brane, making it a natural setting for inflation from the ultraviolet brane.Comment: 28 pages, 7 figure

    Interface electronic states and boundary conditions for envelope functions

    Full text link
    The envelope-function method with generalized boundary conditions is applied to the description of localized and resonant interface states. A complete set of phenomenological conditions which restrict the form of connection rules for envelope functions is derived using the Hermiticity and symmetry requirements. Empirical coefficients in the connection rules play role of material parameters which characterize an internal structure of every particular heterointerface. As an illustration we present the derivation of the most general connection rules for the one-band effective mass and 4-band Kane models. The conditions for the existence of Tamm-like localized interface states are established. It is shown that a nontrivial form of the connection rules can also result in the formation of resonant states. The most transparent manifestation of such states is the resonant tunneling through a single-barrier heterostructure.Comment: RevTeX4, 11 pages, 5 eps figures, submitted to Phys.Rev.

    Generalized Quantum Theory of Recollapsing Homogeneous Cosmologies

    Full text link
    A sum-over-histories generalized quantum theory is developed for homogeneous minisuperspace type A Bianchi cosmological models, focussing on the particular example of the classically recollapsing Bianchi IX universe. The decoherence functional for such universes is exhibited. We show how the probabilities of decoherent sets of alternative, coarse-grained histories of these model universes can be calculated. We consider in particular the probabilities for classical evolution defined by a suitable coarse-graining. For a restricted class of initial conditions and coarse grainings we exhibit the approximate decoherence of alternative histories in which the universe behaves classically and those in which it does not. For these situations we show that the probability is near unity for the universe to recontract classically if it expands classically. We also determine the relative probabilities of quasi-classical trajectories for initial states of WKB form, recovering for such states a precise form of the familiar heuristic "J d\Sigma" rule of quantum cosmology, as well as a generalization of this rule to generic initial states.Comment: 41 pages, 4 eps figures, revtex 4. Modest revisions throughout. Physics unchanged. To appear in Phys. Rev.

    Effects and Detectability of Quasi-Single Field Inflation in the Large-Scale Structure and Cosmic Microwave Background

    Full text link
    Quasi-single field inflation predicts a peculiar momentum dependence in the squeezed limit of the primordial bispectrum which smoothly interpolates between the local and equilateral models. This dependence is directly related to the mass of the isocurvatons in the theory which is determined by the supersymmetry. Therefore, in the event of detection of a non-zero primordial bispectrum, additional constraints on the parameter controlling the momentum-dependence in the squeezed limit becomes an important question. We explore the effects of these non-Gaussian initial conditions on large-scale structure and the cosmic microwave background, with particular attention to the galaxy power spectrum at large scales and scale-dependence corrections to galaxy bias. We determine the simultaneous constraints on the two parameters describing the QSF bispectrum that we can expect from upcoming large-scale structure and cosmic microwave background observations. We find that for relatively large values of the non-Gaussian amplitude parameters, but still well within current uncertainties, galaxy power spectrum measurements will be able to distinguish the QSF scenario from the predictions of the local model. A CMB likelihood analysis, as well as Fisher matrix analysis, shows that there is also a range of parameter values for which Planck data may be able distinguish between QSF models and the related local and equilateral shapes. Given the different observational weightings of the CMB and LSS results, degeneracies can be significantly reduced in a joint analysis.Comment: 27 pages, 14 figure

    Black Holes from Cosmic Rays: Probes of Extra Dimensions and New Limits on TeV-Scale Gravity

    Full text link
    If extra spacetime dimensions and low-scale gravity exist, black holes will be produced in observable collisions of elementary particles. For the next several years, ultra-high energy cosmic rays provide the most promising window on this phenomenon. In particular, cosmic neutrinos can produce black holes deep in the Earth's atmosphere, leading to quasi-horizontal giant air showers. We determine the sensitivity of cosmic ray detectors to black hole production and compare the results to other probes of extra dimensions. With n \ge 4 extra dimensions, current bounds on deeply penetrating showers from AGASA already provide the most stringent bound on low-scale gravity, requiring a fundamental Planck scale M_D > 1.3 - 1.8 TeV. The Auger Observatory will probe M_D as large as 4 TeV and may observe on the order of a hundred black holes in 5 years. We also consider the implications of angular momentum and possible exponentially suppressed parton cross sections; including these effects, large black hole rates are still possible. Finally, we demonstrate that even if only a few black hole events are observed, a standard model interpretation may be excluded by comparison with Earth-skimming neutrino rates.Comment: 30 pages, 18 figures; v2: discussion of gravitational infall, AGASA and Fly's Eye comparison added; v3: Earth-skimming results modified and strengthened, published versio
    • …
    corecore