49 research outputs found

    Impact of community-based presumptive chloroquine treatment of fever cases on malaria morbidity and mortality in a tribal area in Orissa State, India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the Global Strategy for Malaria Control, one of the basic elements is early detection and prompt treatment of malaria cases, especially in areas where health care facilities are inadequate. Establishing or reviving the existing drug distribution centers (DDC) at the peripheral levels of health care can achieve this. The DDCs should be operationally feasible, acceptable by community and technical efficient, particularly in remote hard-core malaria endemic areas.</p> <p>Methods</p> <p>Volunteers from villages were selected for distribution of chloroquine and the selection was made either by villagers or head of the village. The services of the volunteers were absolutely free and voluntary in nature. Chloroquine was provided free of charge to all fever cases. The impact was evaluated based on the changes observed in fever days, fever incidence, parasite incidence and parasite prevalence (proportion of persons harbouring malaria parasite) in the community. Comparisons were made between 1st, 2nd and 3rd year of operation in the experimental villages and between the experimental and check areas.</p> <p>Results</p> <p>A total of 411 village volunteers in 378 villages in the experimental community health center with a population of 125,439 treated 88,575 fever cases with a mean annual incidence of 331.8 cases per 1,000 population during the three-year study period. The average morbid days due to fever (AFD) was reduced to 1.6 ± 0.1 from 5.9 ± 2.1 in the experimental villages while it remained at 5.0 ± 1.0 in the check villages. There was a significant reduction, (p < 0.05) in Annual Fever Incidence (AFI) in the experimental hilltop and foothill villages in comparison to check villages. The change in Annual Parasite Incidence (API) was, however, not statistically significant (p > 0.05). In plain villages that were low endemic, the reductions in AFI and API in experimental villages were statistically significant (p < 0.05). There was significant reduction in the parasite prevalence in high endemic villages of the experimental area both during 2<sup>nd </sup>and 3<sup>rd </sup>year when compared with the check area (p < 0.05) but no such reduction was observed in low endemic areas (p > 0.0.5). Mortality due to malaria declined by 75% in the experimental villages in the adult age group whereas there was an increasing trend in check villages.</p> <p>Conclusion</p> <p>The study demonstrated that a passive chloroquine distribution system operated by village volunteers in tribal areas is feasible and effective in reducing malaria-related morbidity and mortality.</p

    Altered environment and risk of malaria outbreak in South Andaman, Andaman & Nicobar Islands, India affected by tsunami disaster

    Get PDF
    BACKGROUND: Pools of salt water and puddles created by giant waves from the sea due to the tsunami that occurred on 26(th )December 2004 would facilitate increased breeding of brackish water malaria vector, Anopheles sundaicus. Land uplifts in North Andaman and subsidence in South Andaman have been reported and subsidence may lead to environmental disturbances and vector proliferation. This warrants a situation analysis and vector surveillance in the tsunami hit areas endemic for malaria transmitted by brackish water mosquito, An. sundaicus to predict the risk of outbreak. METHODS: An extensive survey was carried out in the tsunami-affected areas in Andaman district of the Andaman and Nicobar Islands, India to assess the extent of breeding of malaria vectors in the habitats created by seawater flooding. Types of habitats in relation to source of seawater inundation and frequency were identified. The salinity of the water samples and the mosquito species present in the larval samples collected from these habitats were recorded. The malaria situation in the area was also analysed. RESULTS: South Andaman, covering Port Blair and Ferrargunj sub districts, is still under the recurring phenomenon of seawater intrusion either directly from the sea or through a network of creeks. Both daily cycles of high tides and periodical spring tides continue to cause flooding. Low-lying paddy fields and fallow land, with a salinity ranging from 3,000 to 42,505 ppm, were found to support profuse breeding of An. sundaicus, the local malaria vector, and Anopheles subpictus, a vector implicated elsewhere. This area is endemic for both vivax and falciparum malaria. Malaria slide positivity rate has started increasing during post-tsunami period, which can be considered as an indication of risk of malaria outbreak. CONCLUSION: Paddy fields and fallow land with freshwater, hitherto not considered as potential sites for An. sundaicus, are now major breeding sites due to saline water. Consequently, there is a risk of vector abundance with enhanced malaria transmission potential, due to the vastness of these tsunami-created breeding grounds and likelihood of them becoming permanent due to continued flooding in view of land subsidence. The close proximity of the houses and paucity of cattle may lead to a higher degree of man/vector contact causing a threat of malaria outbreak in this densely populated area. Measures to prevent the possible outbreak of malaria in this tsunami-affected area are discussed

    Frequency and clinical significance of localized adverse events following mass drug administration for lymphatic filariasis in an endemic area in South India

    Get PDF
    Fear of adverse events (AEs) negatively affects compliance to mass drug administration (MDA) for lymphatic filariasis (LF) elimination program. Systemic AEs are believed to occur because of killing of microfilariae, whereas localized soft tissue reactions might be due to the death of adult worms following therapy. Most AEs are mild and self-limited. However, localized AEs are sometimes more significant and of concern to participants. Here, we describe localized AEs that were noted during a large community study that evaluated the safety of a triple-drug regimen (ivermectin, diethylcarbamazine, and albendazole) for the treatment of LF in India. We have also discussed the importance of timely detection and careful management of AEs for preserving community confidence in MDA

    Dosing pole recommendations for lymphatic filariasis elimination: A height-weight quantile regression modeling approach

    Get PDF
    BACKGROUND: The World Health Organization (WHO) currently recommends height or age-based dosing as alternatives to weight-based dosing for mass drug administration lymphatic filariasis (LF) elimination programs. The goals of our study were to compare these alternative dosing strategies to weight-based dosing and to develop and evaluate new height-based dosing pole scenarios. METHODOLOGY/PRINCIPAL FINDINGS: Age, height and weight data were collected from \u3e26,000 individuals in five countries during a cluster randomized LF clinical trial. Weight-based dosing for diethylcarbamazine (DEC; 6 mg/kg) and ivermectin (IVM; 200 ug/kg) with tablet numbers derived from a table of weight intervals was treated as the gold standard for this study. Following WHO recommended age-based dosing of DEC and height-based dosing of IVM would have resulted in 32% and 27% of individuals receiving treatment doses below those recommended by weight-based dosing for DEC and IVM, respectively. Underdosing would have been especially common in adult males, who tend to have the highest LF prevalence in many endemic areas. We used a 3-step modeling approach to develop and evaluate new dosing pole cutoffs. First, we analyzed the clinical trial data using quantile regression to predict weight from height. We then used weight predictions to develop new dosing pole cutoff values. Finally, we compared different dosing pole cutoffs and age and height-based WHO dosing recommendations to weight-based dosing. We considered hundreds of scenarios including country- and sex-specific dosing poles. A simple dosing pole with a 6-tablet maximum for both DEC and IVM reduced the underdosing rate by 30% and 21%, respectively, and was nearly as effective as more complex pole combinations for reducing underdosing. CONCLUSIONS/SIGNIFICANCE: Using a novel modeling approach, we developed a simple dosing pole that would markedly reduce underdosing for DEC and IVM in MDA programs compared to current WHO recommended height or age-based dosing

    A spatio-temporal approach to short-term prediction of visceral leishmaniasis diagnoses in India.

    Get PDF
    BACKGROUND: The elimination programme for visceral leishmaniasis (VL) in India has seen great progress, with total cases decreasing by over 80% since 2010 and many blocks now reporting zero cases from year to year. Prompt diagnosis and treatment is critical to continue progress and avoid epidemics in the increasingly susceptible population. Short-term forecasts could be used to highlight anomalies in incidence and support health service logistics. The model which best fits the data is not necessarily most useful for prediction, yet little empirical work has been done to investigate the balance between fit and predictive performance. METHODOLOGY/PRINCIPAL FINDINGS: We developed statistical models of monthly VL case counts at block level. By evaluating a set of randomly-generated models, we found that fit and one-month-ahead prediction were strongly correlated and that rolling updates to model parameters as data accrued were not crucial for accurate prediction. The final model incorporated auto-regression over four months, spatial correlation between neighbouring blocks, and seasonality. Ninety-four percent of 10-90% prediction intervals from this model captured the observed count during a 24-month test period. Comparison of one-, three- and four-month-ahead predictions from the final model fit demonstrated that a longer time horizon yielded only a small sacrifice in predictive power for the vast majority of blocks. CONCLUSIONS/SIGNIFICANCE: The model developed is informed by routinely-collected surveillance data as it accumulates, and predictions are sufficiently accurate and precise to be useful. Such forecasts could, for example, be used to guide stock requirements for rapid diagnostic tests and drugs. More comprehensive data on factors thought to influence geographic variation in VL burden could be incorporated, and might better explain the heterogeneity between blocks and improve uniformity of predictive performance. Integration of the approach in the management of the VL programme would be an important step to ensuring continued successful control

    Application of a Household-Based Molecular Xenomonitoring Strategy to Evaluate the Lymphatic Filariasis Elimination Program in Tamil Nadu, India

    Get PDF
    Lymphatic filariasis (LF) is one of the world’s foremost debilitating infectious diseases with nearly 800 million people at risk of infection. Given that LF is a mosquito-borne disease, the use of molecular xenomonitoring (MX) to detect parasite DNA/RNA in mosquitoes can serve as a valuable tool for LF monitoring and evaluation, particularly in Culexvector areas. We investigated using MX in a low-level prevalence district of Tamil Nadu, India by applying a household-based sampling strategy to determine trap location sites. Two independent mosquito samples were collected in each of a higher human infection hotspot area (sites with community microfilaria prevalence �1%) and across a larger evaluation area that also encompassed the hotspots. Pooled results showed mostly reproducible outcomes in both settings and a significant higher pool positivity in the hotspot area. A follow-up survey conducted two years later reconfirmed these findings while also showing a reduction in pool positivity and estimated prevalence of infection in mosquitoes in both settings. The utilization of a household-based sampling strategy for MX proved effective and should be further validated in wider epidemiological settings

    A multi-center, open-labeled, cluster-randomized study of the safety of double and triple drug community mass drug administration for lymphatic filariasis

    Get PDF
    BackgroundThe Global Programme to Eliminate Lymphatic Filariasis (GPELF) provides antifilarial medications to hundreds of millions of people annually to treat filarial infections and prevent elephantiasis. Recent trials have shown that a single-dose, triple-drug treatment (ivermectin with diethylcarbamazine and albendazole [IDA]) is superior to a two-drug combination (diethylcarbamazine plus albendazole [DA]) that is widely used in LF elimination programs. This study was performed to assess the safety of IDA and DA in a variety of endemic settings.Methods and findingsLarge community studies were conducted in five countries between October 2016 and November 2017. Two studies were performed in areas with no prior mass drug administration (MDA) for filariasis (Papua New Guinea and Indonesia), and three studies were performed in areas with persistent LF despite extensive prior MDA (India, Haiti, and Fiji). Participants were treated with a single oral dose of IDA (ivermectin, 200 μg/kg; diethylcarbamazine, 6 mg/kg; plus albendazole, a fixed dose of 400 mg) or with DA alone. Treatment assignment in each study site was randomized by locality of residence. Treatment was offered to residents who were ≥5 years of age and not pregnant. Adverse events (AEs) were assessed by medical teams with active follow-up for 2 days and passive follow-up for an additional 5 days. A total of 26,836 persons were enrolled (13,535 females and 13,300 males). A total of 12,280 participants were treated with DA, and 14,556 were treated with IDA. On day 1 or 2 after treatment, 97.4% of participants were assessed for AEs. The frequency of all AEs was similar after IDA and DA treatment (12% versus 12.1%, adjusted odds ratio for IDA versus DA 1.15, 95% CI 0.87-1.52, P = 0.316); 10.9% of participants experienced mild (grade 1) AEs, 1% experienced moderate (grade 2) AEs, and 0.1% experienced severe (grade 3) AEs. Rates of serious AEs after DA and IDA treatment were 0.04% (95% CI 0.01%-0.1%) and 0.01% (95% CI 0.00%-0.04%), respectively. Severity of AEs was not significantly different after IDA or DA. Five of six serious AEs reported occurred after DA treatment. The most common AEs reported were headache, dizziness, abdominal pain, fever, nausea, and fatigue. AE frequencies varied by country and were higher in adults and in females. AEs were more common in study participants with microfilaremia (33.4% versus 11.1%, P ConclusionsIn this study, we observed that IDA was well tolerated in LF-endemic populations. Posttreatment AE rates and severity did not differ significantly after IDA or DA treatment. Thus, results of this study suggest that IDA should be as safe as DA for use as a MDA regimen for LF elimination in areas that currently receive DA.Trial registrationClinicaltrials.gov registration number: NCT02899936

    Modelling spatiotemporal patterns of visceral leishmaniasis incidence in two endemic states in India using environment, bioclimatic and demographic data, 2013-2022.

    Get PDF
    BACKGROUND: As of 2021, the National Kala-azar Elimination Programme (NKAEP) in India has achieved visceral leishmaniasis (VL) elimination (93% and 99% coverage probability (proportion of observations falling inside 95% Bayesian credible interval for the predicted number of VL cases per month) during the training and testing periods. PIT (probability integral transform) histograms confirmed consistency between prediction and observation for the test period. Forecasting for 2021-2023 showed that the annual VL incidence is likely to exceed elimination threshold in 16-18 blocks in 4 districts of Jharkhand and 33-38 blocks in 10 districts of Bihar. The risk of VL in non-endemic neighbouring blocks of both Bihar and Jharkhand are less than 0.5 during the training and test periods, and for 2021-2023, the probability that the risk greater than 1 is negligible (P<0.1). Fitted model showed that VL occurrence was positively associated with mean temperature, minimum temperature, enhanced vegetation index, precipitation, and isothermality, and negatively with maximum temperature, land surface temperature, soil moisture and population density. CONCLUSIONS/SIGNIFICANCE: The spatiotemporal model incorporating environmental, bioclimatic, and demographic factors demonstrated that the KAMIS database of the national programmme can be used for block level predictions of long-term spatial and temporal trends in VL incidence and risk of outbreak / resurgence in endemic and non-endemic settings. The database integrated with the modelling framework and a dashboard facility can facilitate such analysis and predictions. This could aid the programme to monitor progress of VL elimination at least one-year ahead, assess risk of resurgence or outbreak in post-elimination settings, and implement timely and targeted interventions or preventive measures so that the NKAEP meet the target of achieving elimination by 2030
    corecore