9 research outputs found
Broad-Spectrum Matrix Metalloproteinase Inhibition Curbs Inflammation and Liver Injury but Aggravates Experimental Liver Fibrosis in Mice
Background Liver fibrosis is characterized by excessive synthesis of extracellular matrix proteins, which prevails over their enzymatic degradation, primarily by matrix metalloproteinases (MMPs). The effect of pharmacological MMP inhibition on fibrogenesis, however, is largely unexplored. Inflammation is considered a prerequisite and important co-contributor to fibrosis and is, in part, mediated by tumor necrosis factor (TNF)-α-converting enzyme (TACE). We hypothesized that treatment with a broad-spectrum MMP and TACE-inhibitor (Marimastat) would ameliorate injury and inflammation, leading to decreased fibrogenesis during repeated hepatotoxin-induced liver injury.Methodology/Principal Findings Liver fibrosis was induced in mice by repeated carbon tetrachloride (CCl4) administration, during which the mice received either Marimastat or vehicle twice daily. A single dose of CCl4was administered to investigate acute liver injury in mice pretreated with Marimastat, mice deficient in Mmp9, or mice deficient in both TNF-α receptors. Liver injury was quantified by alanine aminotransferase (ALT) levels and confirmed by histology. Hepatic collagen was determined as hydroxyproline, and expression of fibrogenesis and fibrolysis-related transcripts was determined by quantitative reverse-transcription polymerase chain reaction. Marimastat-treated animals demonstrated significantly attenuated liver injury and inflammation but a 25% increase in collagen deposition. Transcripts related to fibrogenesis were significantly less upregulated compared to vehicle-treated animals, while MMP expression and activity analysis revealed efficient pharmacologic MMP-inhibition and decreased fibrolysis following Marimastat treatment. Marimastat pre-treatment significantly attenuated liver injury following acute CCl4-administration, whereas Mmp9 deficient animals demonstrated no protection. Mice deficient in both TNF-α receptors exhibited an 80% reduction of serum ALT, confirming the hepatoprotective effects of Marimastat via the TNF-signaling pathway.Conclusions/Significance Inhibition of MMP and TACE activity with Marimastat during chronic CCl4administration counterbalanced any beneficial anti-inflammatory effect, resulting in a positive balance of collagen deposition. Since effective inhibition of MMPs accelerates fibrosis progression, MMP inhibitors should be used with caution in patients with chronic liver diseases
Hepatocyte-specific deletion of XBP1 sensitizes mice to liver injury through hyperactivation of IRE1α
X-box binding protein-1 (XBP1) is a transcription factor that plays a central role in controlling cellular responses to endoplasmic reticulum (ER) stress. Under stress conditions, the transcriptionally active form of XBP1 is generated via splicing of Xbp1 mRNA by the ER-resident protein inositol-requiring enzyme-1 (IRE1α). Genetic deletion of XBP1 has multiple consequences: some resulting from the loss of the transcription factor per se, and others related to compensatory activation of IRE1α. The objective of the current study was to investigate the effects of XBP1 deletion in adult mouse liver and determine to what extent they are direct or indirect. XBP1 was deleted from hepatocytes in adult Xbp1(fl/fl) mice using AAV8-Transthyretin-Cre (Xbp1(Δhep)). Xbp1(Δhep) mice exhibited no liver disease at baseline, but developed acute biochemical and histologic liver injury in response to a dietary challenge with fructose for 4 weeks. Fructose-mediated liver injury in Xbp1(Δhep) mice coincided with heightened IRE1α activity, as demonstrated by Xbp1 mRNA splicing, JNK activation, and regulated IRE1α-dependent RNA decay (RIDD). Activation of eIF2α was also evident, with associated up-regulation of the pro-apoptotic molecules CHOP, BIM, and PUMA. To determine whether the adverse consequences of liver-specific XBP1 deletion were due to XBP1 loss or heightened IRE1α activity, we repeated a fructose challenge in mice with liver-specific deletion of both XBP1 and IRE1α (Xbp1(Δhep);Ire1a(Δhep)). Xbp1(Δhep);Ire1a(Δhep) mice were protected from fructose-mediated liver injury and failed to exhibit any of the signs of ER stress seen in mice lacking XBP1 alone. The protective effect of IRE1α deletion persisted even with long-term exposure to fructose. Xbp1(Δhep) mice developed liver fibrosis at 16 weeks, but Xbp1(Δhep);Ire1a(Δhep) mice did not. Overall, the results indicate that the deleterious effects of hepatocyte-specific XBP1 deletion are due primarily to hyperactivation of IRE1α. They support further exploration of IRE1α as a contributor to acute and chronic liver diseases